Connect with us

Concrete

Rationalising cement plant design

Published

on

Shares

If the capacities are more or less fixed and the variables in plant design lie in a narrow range, then why can?t we have standard modular cement plants?
In the recent past, very few cement projects have been announced and taken up for implementation. India?s investment growth, which was quite robust during the last decade, has fallen substantially in the last two years. Several reasons have been attributed for this present dearth of ongoing cement projects; policy uncertainty, delayed project approvals, land acquisition issues, economic slowdown leading to uncertain markets, high interest rates, supply side bottlenecks, et al. Irrespective of whether it is due to some or all of these reasons, the fact remains that the commencement of any and every cement project today, is considerably delayed from earlier times. It therefore becomes necessary to reduce and crash project implementation timelines to ensure that revenue flows start as soon as possible. Quite often, the viability of a project may hinge on this.
The design and engineering of a cement plant can play a significant role in reducing project times, but this can only be achieved with proactive cooperation and teamwork between the customer, technology supplier and the designer.

The typical cycle
In a typical project plan of a cement plant, it is generally accepted that the time between the placement of the first major purchase order and first excavation at site is at least six months, provided the customer places an EPC order on a major cement machinery supplier having adequate resources for carrying out simultaneous engineering on multiple streams. If, on the other hand, the customer opts to place individual equipment orders on OEMs, this time period could stretch to anywhere between eight to eleven months. In the equipment ordering mode, it is the customer who bears the responsibility of coordination between the OEMs, the consultant and the contractors at site.

The purpose of this article is to stimulate some out-of-the-box thinking to evaluate and check if even the accepted six months between the first purchase order and first excavation, can be reduced further. We shall not attempt this in the case of equipment ordering mode as the intense coordination, required between customer, OEMs and the consultant for even the first release of construction drawings, shall automatically ensure delays.

Common patterns
Let us start with the future sizes of cement plants. Today, most of the large limestone deposits in India have been either tied up or already exploited. The existing deposits are far away from urban centres, which are the large consumers of cement. It is therefore likely that the days of 10,000 tpd plus cement plants are over, and that the plants of the future are likely to be in the 5,000 to 7,000 tpd range. This size will help in exploiting smaller deposits, which are also likely to be more accessible from a logistics point of view. While this article does not rule out the large plants completely, it is our contention that the majority of the plants of the future are likely to be in the 5,000 to 7,000 tpd range.

With the need to cover the stockpiles, all the material storages will have to be either silos or longitudinal storages. The storage capacities of these stockpiles in terms of number of days for various materials like limestone, additives, clinker, coal and gypsum are also fairly standardised.

Most of the deposits today are located away from existing railway lines. Thus, the primary mode of transport of materials to and from the plant is likely to be road. Most plants are located on fairly flat ground and minor undulations in the ground are levelled off and the plinth levels of all the process buildings in the plant are usually considered at one level.

The systems ultimately selected by most customers are also fairly standard. Vertical roller mills for raw and coal grinding, reverse air bag houses for de-dusting of kiln gases, six stage pre-heaters, three support kilns, coolers, ESPs for cooler gases and clinker tanks for clinker storage, are the norm for most plants. The central portion of the plant, which is considered the heart of the cement plant stretching from the raw mill, through the blending silo, pre-heater, kiln, cooler up to the clinker silo, are usually laid out in a straight line.

Hence, one can see that the so-called ?variables? in a cement plant generally lie within a narrow band of values, and can therefore be frozen at an optimum value. And this brings us to the central question of this article. Why are all cement plants today designed from first principles, going through the motions of obtaining equipment drawings from the OEMs, preparing general arrangement drawings of the process buildings and designing the civil structures to finally produce construction drawings?

It is suggested for the technology suppliers and the EPC contractors to get together and pre-engineer the plants to be ready with at least the general arrangement drawings and a portion of the civil design of the main process buildings. If the 3D models of the buildings are made ready, the site conditions, which vary from site to site, can be factored in and the required analysis can be done expeditiously.

Standard solutions to save time
The idea is to standardise and modularise the heart of the cement plant such that the final general arrangement drawings are ready before the customer orders the plant. It can be seen that, for a particular plant size, at the most, three sizes of raw mills will be sufficient to handle the variations in the grindability of different types of limestone. An additional fourth size means that the next plant size can be catered to. Three sizes each of blending and clinker silos will suffice to fulfil most customer requirements, for two plant capacities, 5,000 and 7,000 tpd. The cyclone pre-heater, kiln, cooler and coal mill sizes are usually decided once the rated capacity of the plant is frozen. The layout of the modules can be prepared in such a manner that it is possible to remove a module of one size and plug in one of another size without affecting the rest of the layout.

Thus, most of the engineering related to layouts can be completed earlier and about four to six weeks can be saved from the six months for engineering as mentioned earlier. This is possible only in an EPC mode of ordering. When the customer chooses to order the plant as individual equipment or even as packages, there is a certain amount of sequencing that gets inherently built in to the project management process. In this case, the customer becomes the hub and the rest of the stakeholders, the spokes. Every major activity between the stakeholders needs to be ratified or approved by the customer, thus inserting points of delay in the entire process. In EPC mode, this coordination between receipt of equipment drawings, preparation of general arrangement drawings and civil design happens internally with the customer being kept in the loop at all times. While the customer can interject whenever necessary, the mandatory customer approval, that is required in the other modes, does not hinder or delay the process. The customer thus manages the project by exception.

Another area that frequently remains unaddressed is rationalisation or streamlining. When the plants are ordered in package mode, the customer attempts to bring together the OEMs, the consultant and the civil and mechanical contractors, and hopes that between them, they will put together the most cost-effective plant. But if one looks at the post-order value drivers for the stakeholders, none of them have a genuine interest in reducing wasteful civil quantities. The OEMs and consultant are interested in reducing the man-hours they spend on the project, to cut their costs. The contractors are paid per cubic metre of concrete or tonne of steel and do not have a say in rationalising the layouts or civil designs. That is why, at the end of a project, most customers have a nagging In an EPC mode, the EPC contractor is simultaneously responsible for layouts and civil design. He is in a better position to bring about rationalisation of the plant. An added advantage is that site queries that usually crop up during construction are handled more expeditiously because the civil design is in-house. But that advantage is not relevant here.

If pre-engineering, as suggested above, is also carried out, the EPC contractor has more time to rationalise and can therefore do a better job. The customer needs to play a significant role in this process. Tempting as it may be, he needs to curb the natural tendency to make changes in the pre-engineered layouts. Changes to be incorporated will set back the process several steps and squander away the time gains expected from this approach.

To summarise
If cement plant sizes can be standardised to some popular capacities, it is possible for EPC contractors to modularise the main process sections and pre-engineer some of the critical paths in the project in order to save valuable project implementation time.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Pacific Avenue Completes Acquisition of FLSmidth Cement; Rebrands as Fuller Technologies

Published

on

By

Shares

The acquisition of FLSmidth Cement by Pacific Avenue Capital Partners marks a new phase of focused growth and innovation.
Rebranded as Fuller® Technologies, the company will continue delivering world-class solutions with renewed investment and direction.

Pacific Avenue Capital Partners (“Pacific Avenue”), a global private equity firm, has completed its acquisition of FLSmidth Cement following the fulfillment of all customary closing conditions and regulatory approvals. The transaction includes all of FLSmidth Cement’s intellectual property, technology, employees, manufacturing facilities, and global sales and service organizations.

As Fuller Technologies, the company will continue to seamlessly support its customers while advancing its robust portfolio of capital equipment, digital solutions, and service offerings. With a sharpened focus on Pyro and Grinding technologies, alongside core brands such as PFISTER®, Ventomatic®, Pneumatic Conveying, and Automation, Fuller Technologies aims to deliver enhanced value and reliability across the cement and industrial sectors.

Under Pacific Avenue’s ownership, Fuller Technologies will benefit from increased investment in people, products, and innovation. The dedicated management team will work to optimize operations and strengthen customer relationships, ensuring continuity and excellence during this exciting transition.

“We are proud to be the new owner of FLSmidth Cement, now Fuller Technologies, a global leader with a rich history of providing mission-critical equipment and aftermarket solutions in the cement and industrial sectors. We will continue to build upon the Company’s legacy of being at the forefront of technological innovation, service delivery, and product quality as we support our customers’ operations,” says Chris Sznewajs, Managing Partner and Founder of Pacific Avenue Capital Partners.

Pacific Avenue’s deep experience in executing complex industrial carve-outs and guiding standalone businesses into their next growth phase will be instrumental in shaping Fuller Technologies’ future. With a proven track record in building products and capital equipment industries, Pacific Avenue is poised to help Fuller Technologies optimize performance, accelerate growth, and create long-term value for its customers and stakeholders worldwide.

Continue Reading

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares

Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares

Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Trending News