Connect with us

Economy & Market

AAC production in cement plant

Published

on

Shares

Cement companies can manufacture AAC blocks and can compete with stand alone AAC units in the country.
The raw materials required for AAC production are readily available in any cement manufacturing plant. The process does not require installation of a steam boiler or a power plant and can utilise the waste-heat from the clinker cooler exhaust gases for steam curing of aerated concrete. The method also earns carbon credits not only for the green product being made, but also for waste-heat utilisation. Although, there are more than 35 standalone AAC manufacturing units in India, very limited attempts have been made to manufacture AAC by the cement plants. One reason behind this is the lack of awareness about the new technologies that were developed recently in this field. DS Venkatesh elaborates on the technology offered by Cemeng for AAC production in a cement plant.

What is AAC
AAC is lightweight autoclaved aerated concrete, which is completely cured, inert and stable form of calcium silicate hydrate. It is a structural material, approximately one quarter in weight of the conventional concrete. It is composed of minute cells/air pockets, which give the material its lightweight and high thermal insulation characteristics. It is available as blocks and as pre-cast reinforced units for building floors, roofs, walls and lintels.

Raw material
Raw materials for AAC vary with the manufacturer and the location. The kinds of materials that could be used are detailed in the ASTM C1386 specifications. They include some, or all, of the following: fine silica sand; Class F fly ash; hydraulic cements; calcined lime; gypsum; expansive agents such as finely ground aluminium powder or paste; and water.

AAC is produced by mixing quartz sand and/or pulverised fly ash (PFA), lime, cement, gypsum/anhydrite, water and aluminium and is hardened by steam-curing in autoclaves. The silica is obtained from silica sand, fly ash (PFA), crushed silica rock and/or stone. It is possible to obtain silica as a by-product coming from other processes such as foundry sand or burgee from glass grinding; although, it can be used only if the levels of alkali or other impurities are not too high. The calcium is obtained from quick lime, hydrated lime and cement. Gypsum acts as a catalyst and enhances the properties of AAC. Careful regulation of the amount of aluminium powder gives accurate control over the density of the final product.

Cement with the least per cent of clinker would be the cheapest and suitable, e.g., Portland limestone cement. If milling of siliceous material is required, Cemeng suggests grinding of a composite mix of siliceous materials together with cement clinker, lime and gypsum/anhydrous. The ground material can be stored in a single bin. It also eliminates the need for multiple handling of individual constituents and weigh batchers. Cemeng employs a PSRG mill function in open circuit to produce the desired fineness of the composite mix.

Process flow
Cemeng has simplified the process flow to minimise the number of equipment and material handling requirements in mini AAC plants. The process gets rid of ?wet cutting? the green cake as it is possible only if the plant is involved in exclusive production of smaller blocks. Other AAC products with or without reinforcement certainly require ?dry milling? of cured cakes for profiling. Cemeng moulds for AAC are wheel-mounted units with a base plate and sliding sidewalls. There is no need for rotation or dismantling and re-assembling of side plates. Loaded moulds are transferred directly into the autoclaves for steam curing. Cemeng autoclaves generate the required steam in the autoclave itself. Separate boiler is not required. For mini AAC plants, Cemeng suggests after-cutting/milling of cured blocks for economic benefits.

The important unit operations involved in AAC production are gravimetric proportioning and mixing of constituents with water to form the slurry. This is followed with secondary mixing with expansive agents, pouring the slurry into casting moulds and then allowing sufficient time for initial hydration. Once the material is hydrated it gains enough strength to support its own weight and can undergo de-moulding/cutting. The cakes are then transferred into autoclave for high pressure steam curing. Once cooled, the autoclaved blocks are ready for after-cutting/milling as per the required profile. The AAC cost depends mainly on the cost of mineral binders and the expansive agents used. The cost of silica can vary from location to location.

Cement plant and Cemeng mini AAC production line
Cemeng mini AAC production line can be installed in an existing cement plant. Cement plants are already processing and handling both siliceous and mineral binder constituents, except for lime and sand. Also, ground raw meal, preheater ESP dust, pre-calcined meal from bottom most stage of preheater can partially or wholly replace lime. Sand may be replaced by ground slag and cinder. Clinker dust from cooler ESP and gypsum can replace cement. Besides, clinker cooler exhaust air may be effectively utilised for production of steam required for autoclaving, thus eliminating the need for a separate boiler set up.

AAC production capacity, on a thumb rule basis, can be considered as twenty cubic meter per day for every 100 tpd production capacity of the clinkerisation unit. This is based on steam production using gases only from the from clinker cooler exhaust.

Manufacturing process
To make AAC, sand is ground to the required fineness in a ball mill and is stored along with other raw materials. The raw materials are then batched by weight and are delivered to the mixer. Measured amounts of water and expansive agent is added to the mixer to prepare a cementitious slurry.

Preparation of slurry
Slurry preparation is a batch process. When AAC is being made from dry constituents, Cemeng employs separate weighbin augur dosers for each constituent the Cemeng weighbin augur doser, which uses a combination of weight and volumetric filling. A vertical auger looks like a corkscrew. The auger rotates in the hopper filled with lose powder. As it turns, it drives the powder through the bottom of the hopper into a narrow tube, where the powder is drawn down by a turning screw. The auger runs through the narrow tube, creating a tight fit. As the screw turns, it pulls the prescribed amount of powder down the tube. The agitator keeps the feed flowing to the centre of the auger. You can control the amount of powder delivered by setting the number of revolution made by the auger.

The augur screw discharges into a tubular disc conveyor for conveying and transferring directly into the AAC mixer. Subsequently, aluminium paste is added, secondary mixing is carried out and the final slurry is discharged into the AAC moulds.

Casting in moulds
Steel moulds are prepared to receive fresh AAC. If reinforced AAC panels are to be produced, steel reinforcing cages are secured within the moulds. After mixing, the slurry is poured into the moulds. The expansive agent creates small, finely dispersed voids in the fresh mixture, which increases the volume by about 50 per cent within three hours. The moulding of AAC in the mould box, holding for initial strength and de-moulding prior to autoclaving is an important step in reducing the material handling. Conventionally, the base of the moulds-box and three sides are welded together with only one side plate of mountable type. This calls for mould rotation to load the green mould on to the mountable side plate.

Cemeng moulds for AAC are trolley-mounted units with a base plate and sliding sidewalls. During casting, the sidewalls are slided inwards to form a box holding the slurry. The sidewalls keep space all around the green cake for the passage of steam. No rotation or dismantling of the side plates and reassembling are required. After curing in autoclaves, the cake is picked up by a grab and is transferred to the trolley.

Cemeng also offers ?FlexiMold? wherein rectangular shaped pre-stitched permeable cloth bags with open top are held at the base of the trolley. The flexibag is filled half with slurry and the top half is left empty to allow for expansion. As the green cake attains strength, it attains the shape of the flexibag. The telescopic brackets are then lowered. The bracket is held in its lowest position when the trolley is moved into the autoclave. The green cake along with FlexiMold is left undisturbed. After curing, the trolley is moved out and the cured cake in the moulding bag is lifted and transferred to storage. FlexiMold serves as a protective cover for cured block and it is also disposable. The size of the green cake can be set as required and several green cakes can be mounted on a single trolley.

Autoclaving
Autoclaving is steam curing at high temperature and pressure. It is required to achieve the desired structural properties and dimensional stability. The chemical reactions that produce the final calcium silicate hydrate structure happen in the autoclave. The process takes about eight to 12 hours under pressure of about 174 psi (12 bar) and a temperature of about 360?F (180?C), depending on the grade of material produced. Preferably, two autoclaves are used with the casting and precuring section in between. The mixing station is located near the discharge end of the autoclave. The thermic fluid reservoir is located at the feed end of the autoclave. This permits the precuring shed to store the cast moulds for the required duration. The waste heat from grate cooler exhaust is utilised for the heating the thermic fluid in a simple heat exchanger. It is estimated that at least 350-400 kg/hr of steam could be generated per 100 tpd production capacity of clinkerisation unit. To initiate the curing cycle, the thermic fluid, heated to 205?C, is passed through the coils in the reservoir at the bottom of each autoclave to generate steam. The hot steam pressure rises up to 1.75Mpa.

After-cutting/milling of cured AAC Blocks
Steam cured AAC blocks can be transported directly to the marketing yards. After-cutting can be carried out by the stockists or at the construction site itself. Existing granite/stone cutting and polishing units at different cities in the marketing zone can be used to saw the AAC blocks to the required size/dimensions. It is always possible to saw cut the large size AAC blocks to the required size at the construction site. Any broken pieces could be used as lightweight filler, thus nothing is wasted.

Conclusion
Every cement plant has to take green initiatives to safeguard sustainability. Using waste-heat for steam generation is highly cost effective and adds to the profits of AAC production. Besides, the plant will also be a captive consumer of cement. Every cement plant can produce AAC at considerably lower cost and can compete with standalone AAC units. AAC products can save time, labour, cement and sand during construction.

References
Eco-Care Building products: www.primeaac.com
Raw material formulae: Dearye Brick machine
Silica, calcium joined in premium products, by Sandy Herod Pit and Quarry Dec 1987 Pg.72 – 74
Brick manufacture in a Cement Plant by DS Venkatesh, Cemtec Engineering, Secunderabad. Indian Cement Review May 1989, Pages ICR-19 to ICR-25 Green Concrete by Yuvraj Patil, Flycrete. Indian Cement Review, May 2014 ?Let us employ PSRG Milling Technology? by DS Venkatesh, Indian Cement Industry Desk Book, March 2014. www.victoryenergy.com

DS Venkatesh,
Freelance Industrial Consultant
Email: dsvenkatesh40@gmail.com
Former CEO and Director of Cemtec Engineering at Secunderabad, DS Venkatesh is currently working as a freelance industrial consultant. He started as a Design Engineer at ACC and later had a long stint at Holtec-India holding several responsible positions. He has been one of the lead consultants to many rotary based mini cement plants and expansions.

DS Venkatesh has provided technical know-how, design and manufacturing drawings for cement production machinery to many Indian machinery manufacturers. Re-engineering and retrofitting of plant/machinery for enhanced productivity is his forte. His work has helped in enhancement of PSRG milling technology applied in media grinding.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

Walplast Expands HomeSure MasterTouch Line

It is a high-quality yet affordable wall paint

Published

on

By

Shares

Walplast Products, a leading manufacturer of building and construction materials, has unveiled the expansion of its esteemed HomeSure MasterTouch portfolio with the launch of the new HomeSure MasterTouch Lush (Interior & Exterior Emulsion) and HomeSure MasterTouch Prime (Interior & Exterior Primer). These new offerings are strategically positioned as high-quality, yet affordable, high-performance solutions designed to enable individuals to achieve their dream of beautiful homes and “Elevating Lifestyles” (Raho Shaan Se).

The HomeSure MasterTouch Lush Interior Emulsion is a high-quality yet affordable wall paint that delivers best-in-class coverage and an aesthetically appealing, durable finish. Formulated with premium pigments and acrylic binders, it ensures excellent coverage, colour retention, and resistance to fungus, making it an ideal choice for homeowners seeking durability and value. Meanwhile, the HomeSure MasterTouch Lush Exterior Emulsion is specifically engineered to withstand varying weather conditions, particularly in regions with frequent rain and moderate humidity. With strong adhesion and UV-resistant properties, it protects exterior walls against algae growth and black spots while maintaining an elegant matte appearance.

Adding to its comprehensive range, Walplast introduces the HomeSure MasterTouch Prime Interior and Exterior Primers, offering superior adhesion, excellent whiteness, and long-lasting durability. These primers enhance the topcoat application, ensuring a flawless, smooth finish for both interior and exterior surfaces. Engineered with excellent workability and eco-friendly attributes, the primers are free from heavy metals, low VOC (Volatile Organic Compounds), and protect against algae and fungus, making them a reliable base for any painting project.

“At Walplast, we are committed to providing innovative and accessible solutions that enhance the beauty and longevity of homes. The HomeSure MasterTouch range is designed with the modern homeowner in mind—delivering affordability without compromising on quality. Our focus is to empower individuals to bring their dream homes to life with reliable and superior products,” said Kaushal Mehta, Managing Director of Walplast.

Aniruddha Sinha, Senior Vice President Marketing, CSR, and Business Head – P2P Division, Walplast added, “The HomeSure MasterTouch Lush and Prime range align with our vision of offering peace of mind to customers with durable, aesthetic, and affordable solutions for every home. The “Elevate your lifestyle” reflects our belief that everyone deserves to live in a home they take pride in. With this launch, we continue our mission of enabling dreams of beautiful homes for all.”

The newly launched products will be available across key markets, including Maharashtra, Rajasthan, Gujarat, Uttar Pradesh, Madhya Pradesh, Jharkhand, and Chhattisgarh. The HomeSure MasterTouch portfolio also includes premium emulsions such as Bloom and Vivid, as well as a premium primer, catering to diverse customer needs in the construction and home improvement sectors.

Walplast’s HomeSure portfolio encompasses a comprehensive range of construction solutions, including Wall Putty, Tile Adhesives, Gypsum-based products, Construction Chemicals, AAC blocks, and more. With a robust network of over 800 active distributors, 6000 dealers, and more than 65,000 influencers, the HomeSure division continues to be the preferred choice in the construction ecosystem, reinforcing Walplast’s position as an industry leader.

Continue Reading

Concrete

Turning Carbon into Opportunity

Published

on

By

Shares

Carbon Capture, Utilisation, and Storage (CCUS) is crucial for reducing emissions in the cement industry. Kanika Mathur explores how despite the challenges such as high costs and infrastructure limitations, CCUS offers a promising pathway to achieve net-zero emissions and supports the industry’s sustainability goals.

The cement industry is one of the largest contributors to global CO2 emissions, accounting for approximately seven to eight per cent of total anthropogenic carbon dioxide released into the atmosphere. As the world moves towards stringent decarbonisation goals, the cement sector faces mounting pressure to adopt sustainable solutions that minimise its carbon footprint. Among the various strategies being explored, Carbon Capture, Utilisation, and Storage (CCUS) has emerged as one of the most promising approaches to mitigating emissions while maintaining production efficiency. This article delves into the challenges, opportunities, and strategic considerations surrounding CCUS
in the cement industry and its role in achieving net-zero emissions.

Understanding CCUS and Its Relevance to Cement Manufacturing
Carbon Capture, Utilisation, and Storage (CCUS) is an advanced technological process designed to capture carbon dioxide emissions from industrial sources before they are released into the atmosphere. The captured CO2 can then be either utilised in various applications or permanently stored underground to prevent its contribution to climate change.
Rajesh Kumar Nayma, Associate General Manager – Environment and Sustainability, Wonder Cement says, “CCUS is indispensable for achieving Net Zero emissions in the cement industry. Even with 100 per cent electrification of kilns and renewable energy utilisation, CO2 emissions from limestone calcination—a key raw material—remain unavoidable. The cement industry is a major contributor to
GHG emissions, making CCUS critical for sustainability. Integrating CCUS into plant operations ensures significant reductions in carbon emissions, supporting the industry’s Net Zero goals. This transformative technology will also play a vital role in combating climate change and aligning with global sustainability standards.”
The relevance of CCUS in cement manufacturing stems from the inherent emissions produced during the calcination of limestone, a process that accounts for nearly 60 per cent of total CO2 emissions in cement plants. Unlike other industries where CO2 emissions result primarily from fuel combustion, cement production generates a significant portion of its emissions as an unavoidable byproduct. This makes CCUS a particularly attractive solution for the sector, as it offers a pathway to drastically cut emissions without requiring a complete overhaul of existing production processes.
According to a Niti Ayog report from 2022, the adverse climatic effects of a rise in GHG emissions and global temperatures rises are well established and proven, and India too has not been spared from adverse climatic events. As a signatory of the Paris Agreement 2015, India has committed to reducing emissions by 50 per cent by the year 2050 and reaching net zero by 2070. Given the sectoral composition and sources of CO2 emissions in India, CCUS will have an important and integral role to play in ensuring India meets its stated climate goals, through the deep decarbonisation of energy and CO2 emission intensive industries such as thermal power generation, steel, cement, oil & gas refining, and petrochemicals. CCUS can enable the production of clean products while utilising our rich endowments of coal, reducing imports and thus leading to an Indian economy. CCUS also has an important role to play in enabling sunrise sectors such as coal gasification and the nascent hydrogen economy in India.
The report also states that India’s current cement production capacity is about 550 mtpa, implying capacity utilisation of about 50 per cent only. While India accounts for 8 per cent of global cement capacity, India’s per capita cement consumption is only 235 kg, and significantly low compared to the world average of 500 kg per capita, and China’s per capita consumption of around 1700 kg per capita. It is expected that domestic demand, capacity utilisation and per capita cement consumption will increase in the next decade, driven by robust demand from rapid industrialisation and urbanisation, as well as the Central Government’s continued focus on highway expansions, investment in smart cities, Pradhan Mantri Awas Yojana (PMAY), as well as several state-level schemes.

Key Challenges in Integrating CCUS in Cement Plants Spatial Constraints and Infrastructure Limitations
One of the biggest challenges in integrating CCUS into existing cement manufacturing facilities is space availability. Most cement plants were designed decades ago without any consideration for carbon capture systems, making retrofitting a complex and costly endeavour. Many facilities are already operating at full capacity with limited available space, and incorporating additional carbon capture equipment requires significant modifications.
“The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter” says Nathan Ashcroft, Carbon Director, Stantec.
High Capital and Operational Costs CCUS technologies are still in the early stages of large-scale deployment, and the costs associated with implementation remain a significant barrier. Capturing, transporting, and storing CO2 requires substantial capital investment and increases operational expenses. Many cement manufacturers, especially in developing economies, struggle to justify these costs without clear financial incentives or government support.
Regulatory and Policy Hurdles The regulatory landscape for CCUS varies from region to region, and in many cases, clear guidelines and incentives for deployment are lacking. Establishing a robust framework for CO2 storage and transport infrastructure is crucial for widespread CCUS adoption, but many countries are still in the process of developing these policies.

Waste Heat Recovery and Energy Optimisation in CCUS Implementation
CCUS technologies require significant energy inputs, primarily for CO2 capture and compression. One way to offset these energy demands is through the integration of waste heat recovery (WHR) systems. Cement plants operate at high temperatures, and excess heat can be captured and converted into usable energy, thereby reducing the additional power required for CCUS. By effectively utilizing waste heat, cement manufacturers can lower the overall cost of carbon capture and improve the economic feasibility of CCUS projects.
Another critical factor in optimising CCUS efficiency is pre-treatment of flue gases. Before CO2 can be captured, flue gas streams must be purified and cleaned to remove particulates and impurities. This additional processing can lead to better capture efficiency and lower operational costs, ensuring that cement plants can maximise the benefits of CCUS.

Opportunities for Utilising Captured CO2 in the Cement Sector
While storage remains the most common method of handling captured CO2, the utilising aspect presents an exciting opportunity for the cement industry. Some of the most promising applications include:

Carbonation in Concrete Production
CO2 can be injected into fresh concrete during mixing, where it reacts with calcium compounds to form solid carbonates. This process not only locks away CO2 permanently but also enhances the compressive strength of concrete, reducing the need for additional cement.

Enhanced Oil Recovery (EOR) and Industrial Applications
Captured CO2 can be used in enhanced oil recovery (EOR), where it is injected into underground oil reservoirs to improve extraction efficiency. Additionally, certain industrial processes, such as urea production and synthetic fuel manufacturing, can use CO2 as a raw material, creating economic opportunities for cement producers.

Developing Industrial Hubs for CO2 Utilisation
By co-locating cement plants with other industrial facilities that require CO2, manufacturers can create synergies that make CCUS more economically viable. Industrial hubs that facilitate CO2 trading and re-use across multiple sectors can help cement producers monetise their captured carbon, improving the financial feasibility of CCUS projects.

Strategic Considerations for Large-Scale CCUS Adoption Early-Stage Planning and Feasibility Assessments
Cement manufacturers looking to integrate CCUS should begin with comprehensive feasibility studies to assess site-specific constraints, potential CO2 storage locations, and infrastructure requirements. A phased implementation strategy, starting with pilot projects before full-scale deployment, can help mitigate risks and optimise
system performance.
Neelam Pandey Pathak, Founder and CEO, Social Bay Consulting and Rozgar Dhaba says, “Carbon Capture, Utilisation and Storage (CCUS) has emerged as a transformative technology that holds the potential to revolutionise cement manufacturing by addressing its carbon footprint while supporting global sustainability goals. CCUS has the potential to be a game-changer for the cement industry, which accounts for about seven to eight per cent of global CO2 emissions. It addresses one of the sector’s most significant challenges—emissions from clinker production. By capturing CO2 at the source and either storing it or repurposing it into value-added products, CCUS not only reduces
the carbon footprint but also creates new economic opportunities.”

Government Incentives and Policy Support
For CCUS to achieve widespread adoption, governments must play a crucial role in providing financial incentives, tax credits, and regulatory frameworks that support carbon capture initiatives. Policies such as carbon pricing, emission reduction credits, and direct subsidies for CCUS infrastructure can make these projects more economically viable for cement manufacturers.
Neeti Mahajan, Consultant, E&Y India says, “With new regulatory requirements coming in, like SEBI’s Business Responsibility and Sustainability Reporting for the top 1000 listed companies, value chain disclosures for the top 250 listed companies, and global frameworks to reduce emissions from the cement industry – this can send stakeholders into a state of uncertainty and unnecessary panic leading to a semi-market disruption. To avoid this, communication on technologies like carbon capture utilisation and storage (CCUS), and other innovative tech technologies which will pave the way for the cement industry, is essential. Annual reports, sustainability reports, the BRSR disclosure, and other broad forms of communication in the public domain, apart from continuous stakeholder engagement internally to a company, can go a long way in redefining a rather traditional industry.”

The Role of Global Collaborations in Scaling CCUS
International collaborations will be essential in driving CCUS adoption at scale. Countries that have made significant progress in CCUS, such as Canada, Norway, and the U.S., offer valuable insights and technological expertise that can benefit emerging markets. Establishing partnerships between governments, industry players, and research institutions can help accelerate technological advancements and facilitate knowledge transfer.
Raj Bagri, CEO, Kapture, says “The cement industry can leverage CCUS to capture process and fuel emissions and by using byproducts to replace existing carbon intensive products like aggregate filler or Portland Cement.”
Organisations like the Carbon Capture Knowledge Centre in Saskatchewan provide training programs and workshops that can assist cement manufacturers in understanding CCUS implementation. Additionally, global symposiums and industry conferences provide platforms for stakeholders to exchange ideas and explore collaborative opportunities.
According to a Statista report from September 2024, Carbon capture and storage (CCS) is seen by many experts as a vital tool in combating climate change. CCS technologies are considered especially important for hard-to-abate industries that cannot be easily replaced by electrification, such as oil and gas, iron and steel, and cement and refining. However, CCS is still very much in its infancy, capturing just 0.1 per cent of global CO2 emissions per year. The industry now faces enormous challenges to reach the one billion metric tons needing to be captured and stored by 2030 and live up to the hype.
The capture capacity of operational CCS facilities worldwide increased from 28 MtCO2 per year in 2014 to around 50 MtCO2 in 2024. Meanwhile, the capacity of CCS facilities under development or in construction has risen to more than 300 MtCO2 per year. As of 2024, the United States had the largest number of CCS projects in the pipeline, by far, with 231 across various stages of development, 17 of which were operational. The recent expansion of CCS has been driven by developments in global policies and regulations – notably the U.S.’ Inflation Reduction Act (IRA) – that have made the technology more attractive to investors. This has seen global investment in CCS more than quadruple since 2020, to roughly $ 11 billion in 2023.

The Future of CCUS in the Cement Industry
As technology advances and costs continue to decline, CCUS is expected to play a crucial role in the cement industry’s decarbonisation efforts. Innovations such as cryogenic carbon capture and direct air capture (DAC) are emerging as promising alternatives to traditional amine-based systems. These advancements could further enhance the feasibility and efficiency of CCUS in cement manufacturing.
In conclusion, while challenges remain, the integration of CCUS in the cement industry is no longer a question of “if” but “when.” With the right mix of technological innovation, strategic planning, and policy support, CCUS can help the cement sector achieve net zero emissions while maintaining its role as a vital component of global infrastructure development.

Continue Reading

Concrete

Exploring the Indo-German Alliance

Published

on

By

Shares

ICR explores the Indo-German partnership is driving growth through collaboration in trade, technology, sustainability, and workforce development, with a strong focus on SMEs and innovation. By leveraging each other’s strengths, both nations are fostering industrial modernisation, skill development, and economic resilience for a sustainable future.

The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships.
In a rapidly evolving global economy, strategic international collaborations are more important than ever. One such partnership that continues to gain momentum is between India and Germany. This collaboration spans a wide array of sectors—from trade and technology to sustainability and workforce development—and is already delivering impressive results. The recent First Construction Council webinar, titled ‘Indo-German Partnership: Collaborating for Growth’, provided an extensive look at this vital alliance. Moderated by Rajesh Nath, Managing Director, VDMA India, the session explored the evolution, opportunities, and challenges that define the Indo-German partnership, which saw an impressive $33 billion in bilateral trade in 2023.

From Trade to Technology
The Indo-German relationship has undergone a remarkable transformation over the years, transitioning from basic trade to multifaceted cooperation. Rajesh Nath opened the session by underscoring the dynamic nature of Indo-German trade, with more than 1,800 German companies now operating in India. “Machinery accounts for nearly a third of our bilateral trade,” Nath shared, highlighting sectors such as renewable energy, digitalisation, and green hydrogen as key growth areas for the future.
V.G. Sakthikumar, Managing Director, Schwing Stetter India, reflected on his company’s own journey, which mirrors the broader evolution of the Indo-German partnership. When Schwing Stetter first set up operations in India in 1998, the country was considered a relatively small market. Today, India has become the largest manufacturing hub for Schwing Stetter, with exports flowing to markets in Europe, the U.S., and even China. “Germany trusted India to produce high-quality products at competitive prices, and now, we export machinery back to Germany and America,” said Sakthikumar, underscoring the mutual growth that has defined this partnership.

India’s Industrial Modernisation
Germany has played a pivotal role in India’s industrial modernisation, particularly in advancing manufacturing capabilities. Maanav Goel, Managing Director, Hoffmann Quality Tools India, discussed how the historical and contemporary aspects of Indo-German cooperation have shaped both nations’ industries. “Before 1947, our interactions were largely limited to cultural exchanges,” Goel said, explaining how industrial cooperation became central after India’s independence. “Today, German companies like Hoffmann have developed high-quality tools tailored to industries such as automotive and aerospace.”
Goel also pointed out that German companies have been instrumental in advancing India’s Industry 4.0 ambitions. “Sustainability is not just a cost; it’s an investment,” he added, referring to the energy-efficient and precision-engineered solutions Hoffmann provides to enhance India’s manufacturing sector.

Research, Innovation, and the Role of Technology
Innovation has always been the core of the Indo-German partnership. Anandi Iyer, Director, Fraunhofer Office India, highlighted how research and innovation are driving both countries toward a more sustainable future. As the world’s largest applied research ecosystem, Fraunhofer has introduced technologies ranging from digital twins for manufacturing to waste-to-construction materials, all aimed at improving efficiency and sustainability in Indian industries.
Reflecting on Fraunhofer’s work in India, Iyer noted that India is not just a market for technology, but a hub of entrepreneurship and rapid implementation. “We entered India in 2008, and today we earn over €70 million annually from Indian industry contracts,” she shared. Iyer also stressed the importance of democratising technology, especially for India’s small and medium enterprises (SMEs). “SMEs are crucial to the future of both India and Germany. By creating innovation clusters similar to Germany’s, we can ensure that technology benefits all businesses, big and small,” she said.

Cornerstone of Growth
SMEs are a critical focus in the Indo-German partnership. Manoj Barve, India Head, BVMW, emphasised their importance in both countries. “In Germany, SMEs contribute 55 per cent to GDP and employ 60 per cent of the workforce,” Barve said. “India’s SMEs, which contribute 30 per cent to the country’s GDP, are equally important for job creation and economic growth.”
Barve also discussed the complementary strengths of India and Germany. India’s prowess in IT, coupled with Germany’s engineering expertise, provides a fertile ground for collaboration. “Germany’s advanced technology can support India’s ‘Make in India’ initiative, while India’s cost-effective manufacturing can help Germany tackle its energy-led inflation,” he explained.
Gender diversity was another issue Barve touched upon, pointing out that Germany’s workforce is 62 per cent female, supported by policies such as parental leave and flexible working hours. “India, at 37 per cent, has room to grow in this area,” he added. “Addressing issues like workplace safety and societal norms can help unlock the full potential of Indian women in the workforce.”

Navigating Challenges and Expanding Reach
The webinar also addressed the challenges that SMEs face when attempting to expand internationally. Nitin Pangam, Managing Director, Maeflower Consulting, emphasised the need for deeper market insights and sustained engagement to succeed globally. “SMEs need to understand target markets better, whether it’s leveraging the Inflation Reduction Act in the U.S. or tapping into infrastructure projects in Saudi Arabia,” Pangam said.
He also stressed the importance of government support for SMEs. “Institutions like Invest India and VDMA India play a crucial role in guiding SMEs toward international expansion,” Pangam added, suggesting that India could benefit from models like Enterprise Ireland’s, which helps SMEs navigate global markets.

Shared Responsibility
An often overlooked but vital aspect of Indo-German collaboration is skill development. Schwing Stetter’s Sakthikumar discussed how the company has been proactive in training operators and welders, addressing the significant skills gap in India’s construction machinery sector. “We have partnered with state governments to create training programs that produce highly skilled workers, and some of our welding schools have produced global champions,” he shared.
Iyer also highlighted the potential for India to adopt Germany’s dual education system, which sees 5 per cent of the workforce engaged in training at any given time. “This system can be a model for India, where industry-driven skill programs can help bridge the skills gap and align workers with evolving technologies,” Iyer explained.

Looking to the Future
The future of the Indo-German partnership lies in embracing sustainability, digitalisation, and workforce empowerment. Rajesh Nath summarised the webinar’s discussions, emphasising that sustainability and supply chain resilience will play a defining role in the relationship moving forward. “Leveraging technology and deepening institutional collaboration are key to the future,” Nath concluded, signalling the importance of continued cooperation in these areas.
The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships. As Iyer aptly remarked, “The future is bright, but it requires strategic steps to make SMEs and innovation the engines of growth.”
The Indo-German partnership represents a model of what strategic international cooperation can achieve. By focusing on trade, technology, sustainability, and workforce development, both nations have been able to create a mutually beneficial relationship that drives growth and innovation. As India and Germany move forward, their cooperation will serve as a blueprint for growth in the years to come.

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds