Connect with us

Technology

Barrage of praise!

Published

on

Shares

Built at a cost of Rs 27.32 billion in 24 months, the Annaram Barrage of the KLIS project made use of secant piling in the cut-off foundation for the first time in the world in barrage construction.

It’s a part two of our series on the Kaleshwaram Lift Irrigation Scheme (KLIS), among the world’s largest irrigation projects. In this edition, we showcase the construction of Annaram Barrage, constructed by Afcons Infrastructure. This barrage, combined with the Medigadda and Sundilla barrages constitute the ambitious KLIS. Almost 2,000 million cu ft (tmc) of water per day will be moved upriver through gravity canals from Medigadda barrage to Annaram barrage, from where it will be pumped further back to Sundilla barrage. From there, the water will be diverted to Yellampalli reservoir and then distributed to nearby districts.

"We entered the dam and barrage segment in 2017 with the Annaram barrage project, which is part of this mammoth water preservation project," says K Subramanian, Executive Vice-Chairman, Afcons Infrastructure. "Despite entering a new segment, Afcons has achieved several national benchmarks in concrete pumping in the irrigation and hydropower sector. Kudos to the entire team for bringing in the laurels!"

"Being part of such an amazing and extraordinary engineering marvel is an honour. Annaram was the first of the three barrages to be completed substantially before time," adds Sekhar Das, Project Manager, Annaram Barrage Project, Afcons Infrastructure. "The early delivery makes Afcons’s maiden venture into the irrigation segment extra special. With a capacity of 10.87 tmc, Annaram is the second-largest barrage in the entire KLIS." Annaram Barrage was built at a cost of Rs 27.32 billion in a timeframe of 24 months.

Civil scope
Here’s a look at the civil structure specifications of this barrage:
Dimensions: Length – 1,270 m; Width – 100 m
No. of piers: 72. Dimensions (each): Length – 100 m; Thickness – 4 m; Height – 24 m
Launching apron: Upstream – 71 m; Downstream – 116.4 m.
The scope of work included:
Construction of the barrage for a length of 1,270 m with 66 vents of 15 m along with energy dissipation arrangement and abutments, wing and return/flank wall, etc
All mechanical works related to the barrage radial gates of size 15 m +13 m (12 in total) for under sluice bay and for other bays of size 15 m + 12 m (54 in total)
Road bridge with clear carriageway of 7.50 m
Earth bunds in right and left side to connect the road
Construction of guide bunds of both the sides of barrage
Laying of CC block size of 1,500 x 1,500 x 900 mm with loose stone protection in both streams and along with water side of guide bunds.
Laying of stone pitching in upstream and downstream of barrage and launching apron with stones in water side of guide bunds
Design flood discharge – 65,000 cusecs.

Quantifying right
Materials such as cement,reinforcement steel, aggregate, structural steel and rock boulders have been used in the construction of this barrage.
Highlights include:
1,200,000 cu m of concreting done for the entire project
55,000 mt of reinforcement steel used
80 lakh cu m of earthwork moved
1,500 tonne of cement consumed on average per day
200 mt of steel used on average per day
About 6,000 cu m concrete poured on average per day
More than 1 lakh cu m concreting per month achieved for four consecutive months.

Fully equipped
As this project had a short deadline, Afcons sourced additional equipment and resources from time to time to complete work efficiently. "The initial change of scope and halt of work for over 45 days during floods meant extra resources were the key to getting this barrage completed in just 24 months," shares Das. He goes on to elaborate upon the equipment used in the construction of the barrage: 11 piling rigs; 120 dumper trucks; 60 excavators; 11 boring rigs; seven boom placers; four concrete pumps; 36 transit mixers; seven batching plants; two crusher plants with a capacity of 250 tph; vibro hammer for sheet piling; crawler cranes; pick-n-carry cranes; trailers; and dewatering pumps.

Further, Doka formwork was used in the construction of the piers, where 3-m height lift could be achieved in one go. Rolla deck sheets were used in place of precast panels for the road bridge, saving nearly two months" time for casting of panels, erection and material handling. "Moreover, the project progress was monitored in Primavera and financial status tracked on SAP to keep the project on track in all aspects," says Das. "All periodic reports were made as per formats prepared after discussion with all department heads. We also tracked daily progress through CCTV cameras, site visits and focused WhatsApp groups."

Innovation in execution

Conquering challenges
Effective planning and strong teamwork were definitely factors that helped the team overcome various difficulties during execution. As Das shares, "The approach to the site location was poor initially; so mobilisation was a major challenge. But with the help of the authorities and correct permissions, mobilisation could begin smoothly. For timely land acquisition, we conducted numerous meetings with the villagers and explained the benefits of the barrage and KLIS. It helped a great deal to expedite land acquisition. Local support was critical in timely completion."

Das shares other major challenges involved in constructing this barrage and how the team effectively overcame them:

Approach roads: There were no appropriate roadways to transport materials to the site. Many roads and approach paths were created before the project began to cater to this remote location.
Dewatering: As the barrage location was right on the riverbed, the entire area was filled with water. Dewatering arrangements were made using a multistage well-point dewatering system, which helped speed up the process.
River diversion: To start construction activities, the whole length of the river was diverted using separate bunds. The bunds were constructed upstream for temporary diversion and connected to the total length of the barrage.
Procurement: Procurement was a major challenge. Owing to the remoteness of the site location, even for small materials, one would have to travel at least 300 km. Hence, planning and procurement played a critical role in avoiding delays.
Change of barrage location: At the outset of the project, there was a big change in plan. The location of the barrage was shifted, increasing its length by 151 m. A new geological survey was done at the new site once again. This resulted in extra work of more than 4,000 piles and 20 per cent increase over the estimated quantities of concreting and steel. And while there was increase in work quantity, the survey also threw up another major challenge. The ground at the new site had differentiated strata with layers of sand, soil, gravel and, at times, hard rock. Thus secant piling was used in the cut-off foundation.

Safety first
Afcons established and maintained strong health, safety and environment protocols for this project. Consistent mobilisation of resources (machinery, formwork, manpower) in time was ensured for timely completion. The result: a clean safety record of 8.2 million safe man-hours!

SERAPHINA D’SOUZA

Project details
Location:
Annaram, Telangana
Features/specifications: Construction of barrage for a length of 1,270 m with 66 vents of 15 m along with energy dissipation arrangement and abutments, wing and return/flank wall
Total cost: Rs 27.32 billion
Contractor: AFCONS-VIJETA-PES (JV). Afcons Infrastructure. Website:
www.afcons.com; Vijeta. Website: www.vijeta.in; PES. Website: www.peseng.net
Architect/planner: Central Design Organisation (CDO), Government of Telangana.
Cement/concrete: In-house production. Material was procured from many vendors.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds