Connect with us

Concrete

LC3 cement

Published

on

Shares

LC3 is a new type of cement that is based on a blend of limestone and calcined clay. LC3 can reduce CO2 emissions by up to 40 percent, is made using limestone and low-grade clays which are available in abundant quantities,is cost effective and does not require capital intensive modifications to existing cement plants.

The objective of the LC3-Project is, through research and testing, to make LC3 standard and mainstream general-use cement in the global cement market.

The main research activities focus not only on specific thematic areas of cement research but also on production, environmental sustainability and cost effectiveness of this new cement.

With funding from the Swiss Agency for Development and Cooperation through its Global Programme in Climate Change, that has been able to bring the idea of the LC3-technology from the lab in Switzerland to all parts of the world.

Difference between LC3 and conventional Portland cement

Traditional Portland cement consists of 95% clinker. The production of it is energy-intensive and responsible for most of the CO2 within the cement. By reducing the clinker-content with so called Supplementary Cementitious Materials (SCMs), large CO2-savings can be achieved.

LC3 is a new blend of two materials which have a synergetic effect. can reduce half of the clinker content and thereby cut up to 40% of the CO2-emissions. Furthermore, LC3 uses industrial waste materials which thereby increase the resource efficiency and reduce the utilization of the scarce raw materials that are necessary for producing clinker.

How to produce LC3?

To produce LC3, existing equipment can be used. The production line has to be adjusted since Limestone and Calcined Clay are added. The LC3-blend consists of the following materials:

Clinker that needs to be burnt at very high temperatures between 1400 and 1500?C.

  • Calcined clays are burnt at approximately 800?C.

  • Limestone is added without processing

  • Gypsum for workability

LC3-has been used in many different regions and different scales. Overall, more than 25 applications were already built with LC3. In Latin America, several applications have been built. They are mainly in Cuba but also in other countries. Among those applications are a LC3-house, testing sites in the sea, art sculptures and pavements.

In India, the most prominent project is the model Jhansi, India. This house is made 98% out of LC3 and it used 26.6 t of industrial waste (192 kg/sqm) and Saved 15.5 t of CO2 (114 kg/sqm). These CO2-savings are similar to the emissions of 10 passengers traveling by plane from Switzerland to South Africa.

Model house in Jhansi

But there are also numerous other projects in India. For example, the offices of the Swiss Agency for Development and Cooperation in the compound of the Swiss Embassy in Delhi were built with LC3-prefab materials. Furthermore, some roads, a check damn and pavements were built.You find a selection of these applications on the photos.

Swiss Embassy building in Delhi Check dam in Orchha CO2-savings LC3 saves up to 40% of CO2 as compared to Ordinary Portland Cement. Most of the CO2 comes from the clinkerisation process. Therefore, reducing the clinker factor and replacing it with SCMs is the fastest intervention to save high numbers of CO2.

Within the clinker production, there are two main sources of CO2. Firstly, clinker needs to be burnt at very high temperatures between 1400 and 1500?C. Secondly, CO2 embodied in limestone is released during production. Reducing the clinker content therefore means to save both energy-related and emobied CO2.

Resource-savings

Utilization of lower grade material for LC3. Clay waste e.g. ceramic or cosmetic industry Less purity of limestone required, e.g. dolomite presence Using existing deposits of waste materials Low prices for the raw materials. Avoiding creating waste. Avoiding cost (e.g. for landfill taxes)

High performance

For more than 10 years, the prestigious research institutes EPFL, IIT Delhi and Madras and CIDEM have tested LC3 in all different aspects and came to the result LC3 reaches OPC – CEM I performance.

Not only in lab conditions but also through industrial trials and applications these findings were confirmed. They are constantly monitored in existing LC3-applications in different parts of the world and environments (e.g. marine or high-altitude applications).

Globally scalable

The raw materials limestone and calcined clay are abundantly available worldwide. Other commonly used Supplementary Cementitious Materials like fly ash or slag are already fully used and cannot be scaled for the use in cement. Furthermore, with increasing focus on sustainability more and more coal power and steel production plants are expected to be closed. This will further cut the supply of these materials as SCMs. The only material largely available and in sufficient quantity are kaolinitic clays.

Cost-effective

Different scenarios of producing LC3 were analysed financially in a study by the cement market experts. Their results showed that with a cement plant, grinding plant or Greenfield scenario the production of LC3 is profitable. The main indicator for driving the profitability is the close access to suitable clays.

Overall, the production cost can be up to 25% lower for LC3 than for OPC due to savings for energy and material. This is without additional policy incentives, such as green funds or carbon certificates, which can further increase the attractiveness for cement producers.

Ready to be implemented

LC3 is a technology which is market-ready and it is already produced in several plants in the world. The sooner the technology is rolled out globally; the more CO2-emissions can be avoided.

The already existing readiness of the technology for the industrial uptake is an important distinction compared to other green technologies.

Furthermore, LC3 can be used without additional training by builders. In India, demo constructions were built without further providing training.

Source: LC3 website.

Concrete

Jefferies’ Optimism Fuels Cement Stock Rally

The industry is aiming price hikes of Rs 10-15 per bag in December.

Published

on

By

Shares

Cement stocks surged over 5% on Monday, driven by Jefferies’ positive outlook on demand recovery, supported by increased government capital expenditure and favourable price trends.

JK Cement led the rally with a 5.3% jump, while UltraTech Cement rose 3.82%, making it the top performer on the Nifty 50. Dalmia Bharat and Grasim Industries gained over 3% each, with Shree Cement and Ambuja Cement adding 2.77% and 1.32%, respectively.

“Cement stocks have been consolidating without significant upward movement for over a year,” noted Vikas Jain, head of research at Reliance Securities. “The Jefferies report with positive price feedback prompted a revaluation of these stocks today.”

According to Jefferies, cement prices were stable in November, with earlier declines bottoming out. The industry is now targeting price hikes of Rs 10-15 per bag in December.

The brokerage highlighted moderate demand growth in October and November, with recovery expected to strengthen in the fourth quarter, supported by a revival in government infrastructure spending.
Analysts are optimistic about a stronger recovery in the latter half of FY25, driven by anticipated increases in government investments in infrastructure projects.
(ET)

Continue Reading

Concrete

Steel Ministry Proposes 25% Safeguard Duty on Steel Imports

The duty aims to counter the impact of rising low-cost steel imports.

Published

on

By

Shares

The Ministry of Steel has proposed a 25% safeguard duty on certain steel imports to address concerns raised by domestic producers. The proposal emerged during a meeting between Union Steel Minister H.D. Kumaraswamy and Commerce and Industry Minister Piyush Goyal in New Delhi, attended by senior officials and executives from leading steel companies like SAIL, Tata Steel, JSW Steel, and AMNS India.

Following the meeting, Goyal highlighted on X the importance of steel and metallurgical coke industries in India’s development, emphasising discussions on boosting production, improving quality, and enhancing global competitiveness. Kumaraswamy echoed the sentiment, pledging collaboration between ministries to create a business-friendly environment for domestic steelmakers.

The safeguard duty proposal aims to counter the impact of rising low-cost steel imports, particularly from free trade agreement (FTA) nations. Steel Secretary Sandeep Poundrik noted that 62% of steel imports currently enter at zero duty under FTAs, with imports rising to 5.51 million tonnes (MT) during April-September 2024-25, compared to 3.66 MT in the same period last year. Imports from China surged significantly, reaching 1.85 MT, up from 1.02 MT a year ago.

Industry experts, including think tank GTRI, have raised concerns about FTAs, highlighting cases where foreign producers partner with Indian firms to re-import steel at concessional rates. GTRI founder Ajay Srivastava also pointed to challenges like port delays and regulatory hurdles, which strain over 10,000 steel user units in India.

The government’s proposal reflects its commitment to supporting the domestic steel industry while addressing trade imbalances and promoting a self-reliant manufacturing sector.

(ET)

Continue Reading

Concrete

India Imposes Anti-Dumping Duty on Solar Panel Aluminium Frames

Move boosts domestic aluminium industry, curbs low-cost imports

Published

on

By

Shares

The Indian government has introduced anti-dumping duties on anodized aluminium frames for solar panels and modules imported from China, a move hailed by the Aluminium Association of India (AAI) as a significant step toward fostering a self-reliant aluminium sector.

The duties, effective for five years, aim to counter the influx of low-cost imports that have hindered domestic manufacturing. According to the Ministry of Finance, Chinese dumping has limited India’s ability to develop local production capabilities.

Ahead of Budget 2025, the aluminium industry has urged the government to introduce stronger trade protections. Key demands include raising import duties on primary and downstream aluminium products from 7.5% to 10% and imposing a uniform 7.5% duty on aluminium scrap to curb the influx of low-quality imports.

India’s heavy reliance on aluminium imports, which now account for 54% of the country’s demand, has resulted in an annual foreign exchange outflow of Rupees 562.91 billion. Scrap imports, doubling over the last decade, have surged to 1,825 KT in FY25, primarily sourced from China, the Middle East, the US, and the UK.

The AAI noted that while advanced economies like the US and China impose strict tariffs and restrictions to protect their aluminium industries, India has become the largest importer of aluminium scrap globally. This trend undermines local producers, who are urging robust measures to enhance the domestic aluminium ecosystem.

With India’s aluminium demand projected to reach 10 million tonnes by 2030, industry leaders emphasize the need for stronger policies to support local production and drive investments in capacity expansion. The anti-dumping duties on solar panel components, they say, are a vital first step in building a sustainable and competitive aluminium sector.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds