Technology
I will always try to find real applications for what we design and build.
Published
4 years agoon
By
admin
Advancements in computer and IT technologies, innovative advancement in fiber optic sensors, nanotechnologies, dynamic monitoring devices, new GPS system technologies, and wireless monitoring techniques will be used as a base for future survey and SHM programmes, and will become an integral part of the building design and Intelligent Building Management System (IBMS), says Dr. Ahmad Abdelrazaq, Senior Executive Vice President and the Head of the Highrise and Complex Building Division at Samsung C & T Corporation, Seoul, Korea. ICR has a one-to-one interaction with the man who was involved in the design, execution and performance monitoring of the world´s tallest tower, the Burj Khalifa. Excerpts from the interview.
You have been with Samsung for some time now. What has your journey been like?
Since joining Samsung in 2004, I have overseen the division transition from a traditional construction-only provider into the successful design-build, pre-construction, value engineering, and fast track design/construction for high-rise and complex buildings. I have been involved with many projects at Samsung, most notably in all aspects of construction planning, pre-construction services, and structural design of the Burj Khalifa, the Jumeirah Gardens in Dubai, Samsung HQ, Seoul, the 151-story Inchon Tower, and the Yongsan Landmark Tower (a 620m- tall , 111-storey tower) in Seoul.
You possess a wealth of knowledge and experience. How do you share it with the industry?
In addition to presenting at several international professional conferences and workshops, I also serve as a lecturer at Seoul National University where I teach graduate classes the structural design of high-rise buildings and spatial structures. I have also served as an adjunct professor at the Illinois Institute of Technology´s School of Architecture, where my research interest included the development of innovative structural systems in concrete/steel/composite structures, and in aerodynamic shaping of super tall buildings to mitigate wind effects, to reduce the dynamic wind forces and resonant vibration. It is important to note that these mitigation measures were later incorporated in real projects including the Tower Palace III, the Burj Khalifa, and the Twisted Towers.
YWhy are you participating in this conference?
This conference is a celebration of the accomplishment of giants in the concrete industry; those who have contributed significantly to where we are today. The calibre of the people attending the conference will no doubt allow me to exchange significant information that is critical to what we do today and to what the future may hold. I had the opportunity to work with some of these giants and this conference will allow me to meet them again under a single roof.
YWhy have you chosen the topic you are speaking on?
I have chosen two topics to speak about at the conference which I believe are dear to every engineer, in terms of getting feedback on the work we do. Engineers design many buildings through their professional careers but most are not / never able to correlate their design to the actual response and behaviour of the building to forces imposed on them during their life, including but not limited to gravity and lateral loads.
This paper takes the reader into a journey of my involvement as the senior structural engineer of the project responsible for developing the structural and foundation design of the Burj Khalifa tower, to being involved in the construction as the chief technical director of the project and in developing the construction planning, logistics, execution strategy, evaluation of the building structure as we build for the entire project, ensuring that the project is delivered to the highest quality and standards, and being able to conceptualise and execute one of the most comprehensive real- time structural health monitoring programmes of its kind. All that gave me a complete feedback on the structural behaviour of the building in all aspects, starting from the foundation to the tip of the pinnacle at 828m above the ground. Therefore, I had the luxury to design, build, and still continuously test the tallest man- made structure in the world.
I hope that sharing my Burj Khalifa experience with engineers/building authorities/ owners/ developers. may give them the opportunity to set up such programmes for all essential and important facilities. This will give us feedback on the buildings we design and aid us in improving on them in the future. I am now testing the building in full scale and there is no better way to do it.
What are your expectations from this conference?
This conference will allow me to share knowledge, information, and to have a better understating of the future direction of the concrete industry and best practices from the giants in our industry. I will always try to find real applications for what we design and build.
Tell us a bit more about the content you will be sharing through your paper?
My paper is titled `Validating the Structural Behaviour and Response of Burj Khalifa: Full Scale Structural Health Monitoring Programmes.` A new generation of tall and complex buildings reflects the latest developments in materials, design, sustainability, construction, and IT technologies. While design complexity can be managed through advances in structural analysis tools and software, ultimately the design of these buildings still relies on minimum code requirements that are yet to be validated in full scale.
My involvement in the design and construction of the Burj Khalifa from inception until completion prompted me to develop an extensive survey and real-time structural health monitoring programme to validate the assumptions made during the development of the design and construction planning of the tower.
At 828m, Burj Khalifa is the world´s tallest man-made structure, composed of 162 floors above grade and three basement levels. The focus of my paper is to provide a brief description of the structural and foundation system of the tower and to discuss the development of the survey and real-time Structural Health Monitoring Programmes (SHMP). Correlation between the predicted and actual measured structural behaviour will also be discussed; however, because of confidentiality clauses, the actual measured data cannot be disclosed at this time.
The SHMP included:
- Monitoring the tower´s foundation system.
- Monitoring the foundation settlement.
- Measuring the column/wall strains and shortening during and after construction.
- Real-time measuring of the tower lateral displacement and dynamic characteristics during construction.
- Measuring the building lateral movement under lateral loads (wind, seismic) during construction.
- Measuring the building displacements, accelerations, dynamic characteristics, and structural behaviour during service life.
- Monitoring the pinnacle dynamic behaviour and fatigue characteristics.
- While the SHMP developed for the Burj Khalifa was a futuristic model at the time, this field is constantly evolving and a new generation of SHM systems will emerge that uses the latest technological advances in devices and IT technologies.
Can you share some industry developments related to the subject you intend to present?
Presently, in China, there are similar programmes being executed and that may follow the same programme presented in this paper. There are only a few buildings in the world that have been designed, constructed, and monitored by the same engineer. This provided a complete and rare loop of linking the design to the final behaviour from the point of view of the original designer´s perspective. The idea is to validate all the assumptions made in the design and to give assurances how to build better and push the limits to the next level while developing the next generation of tall building systems.
Do you have a message for ICR readers?
Traditionally, the design and construction of tall buildings relied solely on minimum building code requirements, fundamental mechanics, scaled models, research, and experience. While many research and monitoring programmes have been done on tall buildings, these programmes had a very limited research and scope and were yet to be systematically validated or holistically integrated. The development of the comprehensive SHM programmes at the Burj Khalifa provided immediate and direct feedback on the actual structural performance of the tower, from the beginning of construction and throughout its lifetime, and includes the following:
- Testing all concrete grades to confirm the concrete mechanical properties and characteristic (strength, modulus of elasticity, shrinkage and creep characteristics, split cylinder, durability, heat of hydration, etc).
- Survey monitoring programme s to measure the foundation settlement, column shortening, and tower lateral movement from the early construction stage until the completion of the structure.
- Strain monitoring programme to measure the actual strains in the columns, walls, and near the outrigger levels to confirm the load transfer into the exterior mega columns.
- Survey programme to measure the building tilt in real time, and the utilisation of GPS technology in the survey procedure.
- Temporary real- time SHM programme to measure the building acceleration, displacement, and to provide real-time feedback on the tower dynamic characteristics and behaviour during construction.
- Permanent real-time SHM programme to measure the building acceleration, movement, dynamic characteristics (frequencies, mode shapes), acceleration time history records, wind velocity and direction along the entire height, and fatigue behaviour of the spire/pinnacle.
- The data collected from the above survey and SHM programmes were found to be well in agreement with Samsung- predicted structural behaviour.
- The survey and SHM programmes developed for the Burj Khalifa have:
- Validated the design assumptions and parameters used in the design, analysis, and construction techniques;
- Provided real-time information on the structural system response and allowed for potential modification to the construction techniques, to ensure the expected performance during construction and through its lifetime;
- Identified anomalies at early stages and allowed for means to address them; generated very large in-situ data for all concrete materials used for the tower.
- Provided full feedback on the foundation and structural system behavior and characteristics since the start of construction.
The survey and SHM programmes developed for the Burj Khalifa will no doubt be pioneers in the use of survey and SHM programme concepts as part of the fundamental design concept of building structures and will be benchmarked as the model for future monitoring programmes for all critical and essential facilities.
Alongside this, advancements in computer and IT technologies, innovative advancement in fiber optic sensors, nanotechnologies, dynamic monitoring devices, new GPS system technologies, and wireless monitoring techniques will be used as a base for future survey and SHM programmes and it will become an integral part of the building design and Intelligent Building Management System.
Learning from the Expert
A galaxy of global experts will soon descend in Mumbai to promote cost-effective and green concrete technologies at the inaugural R. N. Raikar Memorial International Conference. To be held on 20 and 21 December 2013, the event will feature over 88 renowned international experts from the world of concrete.
One such stalwart is Dr. Ahmad Abdelrazaq, Senior Executive Vice President and the Head of the Highrise and Complex Building Division at Samsung C & T Corporation, Seoul, Korea. His paper, `Validating the Structural Behaviour and Response of Burj Khalifa: Full Scale Structural Health Monitoring Programmes` is already generating a lot of buzz within the engineering community and is tipped to be one of the star presentations at the event. Presently, Dr. Ahmad is directly involved in the design and construction of several mixed-use, high-rise and complex building projects in Asia and the Middle East, including the Worli development project, Mumbai.
You may like
-
Double Tap to Go Green
-
15th Cement EXPO to be held in March 2025 in Hyderabad
-
14th Cement EXPO
-
Vinita Singhania receives Lifetime Achievement Award at the 7th Indian Cement Review Awards
-
Increasing Use of Supplementary Cementitious Materials
-
Indian Cement Review Touts Decarbonisation Mantra & Awards Growth
Concrete
We consistently push the boundaries of technology
Published
1 day agoon
April 18, 2025By
Roshna
Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.
SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.
Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.
How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.
Key features include:
- High efficiency: Ensures optimal throughput for large volumes of waste.
- Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
- Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.
What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:
- Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
- Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
- Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
- Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.
What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.
This includes:
- Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
- Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
- Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
- Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.
How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:
- Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
- AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
- Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
- Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.
What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:
- AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
- Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
- Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
- Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
- Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.
(Communication by the management of the company)
Concrete
FORNNAX Technology lays foundation for a 23-acre facility in Gujarat
Published
1 month agoon
March 17, 2025By
admin
FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.
Concrete
Decarbonisation is a focus for our R&D effort
Published
2 months agoon
February 12, 2025By
admin
Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.
Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.
Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.
The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.
What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.
You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.
The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.
Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.