Connect with us

Concrete

Using Slag as Fine Aggregate in Concrete

Published

on

Shares

Disposal of waste slag is a major concern and is perceived as an environmental hazard across the steel industry. Nagesh Veeturi, Executive Director – Civil, and Sumanta Sahu, DGM – Quality, KEC International, investigate the possibility of utilising slag as a fine aggregate and its effect on the strength and workability parameters of concrete.

Concrete is one of the major construction materials in civil construction. It is a composite material with cement, aggregate, sand, admixture and water as ingredients. River sand and Manufactured Sand are mostly used as fine aggregate in concrete. River sand is formed by the natural weathering of rocks over many years and is preferred to be used as fine aggregate. Manufactured Sand is produced by crushing hard rocks into smaller sizes using a crusher followed by washing to use in concrete. The growth of infrastructure and building projects demand the use of huge quantities of sand in concrete.
The mining of sand from riverbeds is posing a serious threat to the environment causing the erosion of riverbeds and banks, triggering landslides, inducing loss of vegetation on the riverbanks, lowering the underground water table, etc. Hence, sand mining from riverbeds and rock is being restricted or banned by the authorities nowadays. To nullify the above concerns, concrete mix trials were conducted in our quality laboratory by using LD slag and blast furnace slag as fine aggregate.

LD Slag
LD slag is a byproduct of the steel industry. It is produced from impurities during the steel-making process. LD Slag consists of calcium, magnesium, iron, silicon and aluminium oxides minerals. During the production of steel, the slag is separated from steel in the furnace, and steel slag fine aggregate is formed after quenching the molten slag with water. There are many grades of steel produced and properties of steel slag vary depending on raw materials used for steel production. LD slag is typically granulated and used as a fine aggregate. Normally it is heavier than sand and its specific gravity is observed to be 3.2 to 3.6 with water absorption around 3 per cent.

Production process of LD Slag.
Due to its high density, segregation is observed as a fine aggregate in concrete. Materials can be used as partial replacement of fine aggregate.

Blast furnace slag
Blast furnace slag is a byproduct produced during the iron making process in blast furnaces. During the smelting process, iron ores are fed into the furnace at high temperature. The process leads to the production of molten iron and waste materials. Slag, which is a waste material, is separated and quenched with water. This rapid cooling process solidifies the slag into granular particles. Blast furnace slag is observed to be lighter than sand, specific gravity of sand is found to be 2.01.

Concrete mixes with slag as fine aggregate
Concrete mix trials were conducted with LD slag, BF slag as fine aggregate. Due to the high density of LD slag, segregation was noticed on concrete mixes. The same segregation is observed in concrete mix by using BF slag due to its lightweight. Further concrete mix trials were conducted by mixing LD slag and BF slag with different proportions – this is done to study the initial properties of concrete such as cohesiveness and workability retention.
The concrete mix is observed to be cohesive
with good workability retention by using LD slag and BF slag as fine aggregate with the same
proportions. Other properties of concrete such as setting, and strength were observed complying to specification requirements.

Benefits of using LD slag and BF slag as fine aggregate
Durability:
Calcium oxide and silicon oxide are prime chemicals used in the composition of LD slag and BF slag, and both possess pozzolanic properties. calcium oxide and silicon oxide react with calcium hydroxide produced during hydration of cement and increases strength and permeability properties
of concrete.
Sustainable approach: LD slag and BF slag are the by-products from the iron industry which makes it an industrial waste product. Using materials as fine aggregate helps to conserve natural resources. Storage of this material is a major concern in industry. Utilisation of LD slag and BF slag as fine aggregate minimise storage area, air pollution.
Reduction in carbon footprint and heat of hydration: The use of LD slag and BF slag as a fine aggregate leads to reduction in cement content in concrete mixes. Cement is a major source of rise in temperature in concrete mixes that leads to increase in carbon emission during its production process. Reduction in cement content minimises the heat of hydration and prevents thermal cracks in concrete.
Enhance workability in concrete mixes: Workability in concrete is increased due to the even surface of LD slag and BF slag. This makes the concrete easier to place during the construction process.
Cost optimisation: LD slag and BF slag are industrial waste products and are cheaper than manufactured sand and river sand. Also due to the pozzolanic properties of slag, cement content in concrete can be minimised. Overall concrete cost is reduced with improved performance.
Due to the vast growth of construction sectors, the demand for concrete has increased as a fine aggregate. Thus, it is essential to find suitable alternatives to sand such as slag materials.
It is observed that the combined use of LD slag and BF slag as fine aggregates leads to cohesive mix with desired workability and strength. The PC base chemical admixture was added to reduce the water content and maintain workability of the mix. Finally, it is concluded that slag can be used as an alternative of sand in concrete. As both types of slags are by-products from the steel industry, their long-term performance is vital, and further studies in this direction are still in progress.

ABOUT THE AUTHOR:
Nagesh Veeturi, Executive Director – Civil, KEC International
is a seasoned professional having entrepreneurial and leadership skills with key focus on strategy and business transformation.

Sumata Sahu, DGM – Quality, KEC International has 32 years of rich experience in the construction industry mainly as QA/QC and project management professional.

Concrete

NBCC Wins Rs 550m IOB Office Project In Raipur

PMC Contract Covers Design, Execution And Handover

Published

on

By

Shares



State-owned construction major NBCC India Ltd has secured a new domestic work order worth around Rs 550.2 million from Indian Overseas Bank (IOB) in the normal course of business, according to a regulatory filing.

The project involves planning, designing, execution and handover of IOB’s new Regional Office building at Raipur. The contract has been awarded under NBCC’s project management consultancy (PMC) operations and excludes GST.

NBCC said the order further strengthens its construction and infrastructure portfolio. The company clarified that the contract is not a related party transaction and that neither its promoter nor promoter group has any interest in the awarding entity.

The development has been duly disclosed to the stock exchanges as part of NBCC’s standard compliance requirements.

Continue Reading

Concrete

Nuvoco Q3 EBITDA Jumps As Cement Sales Hit Record

Premium products and cost control lift profitability

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd reported a strong financial performance for the quarter ended 31 December 2025 (Q3 FY26), driven by record cement sales, higher premium product volumes and improved operational efficiencies.

The company achieved its highest-ever third-quarter consolidated cement sales volume of 5 million tonnes, registering growth of 7 per cent year-on-year. Consolidated revenue from operations rose 12 per cent to Rs 27.01 billion during the quarter. EBITDA increased sharply by 50 per cent YoY to Rs 3.86 billion, supported by improved pricing and cost management.

Premium products continued to be a key growth driver, sustaining a historic high contribution of 44 per cent for the second consecutive quarter. The strong momentum reflects rising brand traction for the Nuvoco Concreto and Nuvoco Duraguard ranges, which are increasingly recognised as trusted choices in building materials.

In the ready-mix concrete segment, Nuvoco witnessed healthy demand traction across its Concreto product portfolio. The company launched Concreto Tri Shield, a specialised offering delivering three-layer durability and a 50 per cent increase in structural lifespan. In the modern building materials category, the firm introduced Nuvoco Zero M Unnati App, a digital loyalty platform aimed at improving influencer engagement, transparency and channel growth.

Despite heavy rainfall affecting parts of the quarter, the company maintained improved performance supported by strong premiumisation and operational discipline. Capacity expansion projects in the East, along with ongoing execution at the Vadraj Cement facilities, remain on track. The operationalisation of the clinker unit and grinding capacity, planned in phases starting Q3 FY27, is expected to lift total cement capacity to around 35 million tonnes per annum, reinforcing Nuvoco’s position as India’s fifth-largest cement group.

Commenting on the results, Managing Director Mr Jayakumar Krishnaswamy said Q3 marked strong recovery and momentum despite economic challenges. He highlighted double-digit volume growth, premium-led expansion and a 50 per cent rise in EBITDA. The company also recorded its lowest blended fuel cost in 17 quarters at Rs 1.41 per Mcal. Refurbishment and project execution at the Vadraj Cement Plant are progressing steadily, which, along with strategic capacity additions and cost efficiencies, is expected to strengthen Nuvoco’s long-term competitive advantage.

Continue Reading

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds