Connect with us

Concrete

Process Control Solutions for the Future

Published

on

Shares

From the increased use of modern techniques of control to advanced software solutions, technology is accelerating cement processes in myriad ways. ICR looks at the economic impact of AI and automation on the cement sector.

The history of cement production dates back to 12,000 years ago. The earliest archaeological discovery of a consolidated whitewashed floor made from burned limestone and clay is found in modern-day Turkey. Around 800 BC, the Phoenicians had the knowledge that a mixture of burnt lime and volcanic ash, today called ‘pozzolana’, could be used to produce hydraulic lime, which was not only stronger than anything previously used, but also hardened under water. The Romans perfected it later with their process called, ‘opus caementicium,’ a type of concrete made of lime with aggregates of sand and crushed rock. No wonder the Colosseum and Pantheon in Rome, and the Hagia Sophia in Istanbul, all stand perfectly fine today.
But modern production of cement is million times bigger in scale and must be controlled to derive the benefits of cost, throughput and quality, sometimes several objective functions must be optimised to give the overall gain in terms of profit maximisation. The technology itself progressed in leaps and bounds to make allowance for both throughput increase and cost while the quality improved from one milestone to the next. The first cement standard for Portland cement was approved in Germany in 1878, defining the first test methods and minimum properties, with many other countries following suit. 
Cement production and applications surged globally at the turn of the century. Since the 1900s, rotary kilns have replaced the original vertical shaft kilns, as they use radiative heat transfer, more efficient at higher temperatures. achieving a uniform clinkering temperature and producing stronger cement. Gypsum is now also added to the resulting mixture to control setting and ball mills are used to grind clinkers.
Other developments in the last century include calcium aluminate cements for better sulphate resistance, the blending of Rosendale (a natural hydraulic cement produced in New York) and Portland cements to make a durable and fast-setting cement in the USA, and the increased usage of cementitious materials to store nuclear waste. New technologies and innovations are constantly emerging to improve the sustainability, strength and applications of cement and concrete. Some advanced products incorporate fibres and special aggregates to create roof tiles and countertops, for example, whilst offsite manufacture is also gaining prominence with the rise of digitalisation and AI, which could reduce waste and improve efficiency and on-site working conditions. Cements and concretes are also being developed, which can absorb CO2 over their lifetimes, reducing the carbon footprint of the building material.
The focus of the current times is manifold – on the one hand cement process and technology experts have the job cut out to create sustainable solutions and on the other, the process control techniques have improved to embrace new digitisation techniques to better improve the following processes:

  • Quarrying and preparation
  • Close circuit blending systems that create the ideally suited raw mix
  • Clinker kilning
  • Cement grinding

The systems of the cement production control these operations to produce maximal quantity of the cement with prescribed quality and minimal cost. The quality also depends on many variables. The appropriate rate of the basic components determining the setting time, strength, heat of hydration, expansion, etc. is the most important. The free lime content (FLC) also influences the quality similarly to the size distribution and the relative surface area. A great many open and closed loop controls can be found in the cement production, however, the proper control of the operations-triplet proportioning-burning-grinding can ensure to reach the overall control aim, the other controls are auxiliary ones. The synthesis of this would aim at thermal efficiency parameters with use of different fuel mixes, alternate fuels included and the raw mix must be so blended such that a range of objective functions can be met that include Lumping, Burnability, High Heat of Hydration, Fast Setting, One Day, 3 Day, 7 Day, 28 Day Strength, etc.
The burnability parameters include lime saturation factor, silica ratio, af ratio, content of coarse quartz, content of coarse calcite, while the compositional parameters like content of C3S, MgO, C3A and presence of alkali. Silica ratio and other aspects could together influence the attainment of the quality objectives like fast setting or efficiency objectives like high heat of hydration. This is where control systems step in to play a decisive role to make adjustments in a number of parameters, while the production process remains continuous. Achieving stability of the process, where coal feed, kiln feed, raw mix, all have a myriad of parameters to be weighed against the objectives of productivity, efficiency and quality.

The AI to Z of Technology
Artificial intelligence (AI) today provides valuable decision support and control techniques in these uncertain environments. Two common techniques used in this field are artificial neural networks and fuzzy logic. Fuzzy logic is especially useful for processes that are difficult to control by conventional or discrete methods due to the lack of knowledge of quantitative relations between the inputs and outputs. Controls based on fuzzy logic employ a close-to-human language to describe the input-output relationships of the controlled process. The controller converts an expert knowledge-based control strategy into an automatic control strategy imposed on the process. Most control environments have steadily moved towards adoption of AI and fuzzy logic techniques as dynamic environments are impossible to model with any other tools and techniques unless we want to avoid the inter-play and friction of some of the control parameters.
Use of modern techniques of control have shown productivity gains (t/h) of 3 per cent and energy gains (Kcal/t) of 5 per cent compared to expert operators using controls. In cement milling, the productivity increased by 3.1 per cent and the energy savings were 2.9 per cent. In clinkerisation, there were increases from 1 to 3 per cent in the daily production, reductions from 2 to 4 per cent in energy consumption, reductions from 12 to 16 per cent in the variability of clinker quality requirements, and reduction of up to 10 per cent in the variability of the lifetime of the liner. In other clinker kilns, there were from 4 to 5 per cent reduction in fuel consumption, from 80 to 90 per cent decrease in variability and increase from 7 to 8 per cent in productivity.
Now the focus in controls have shifted to use of algorithms and software that would step in to make allowance on the selection of specific objective functions like quantity over efficiency or efficiency over quality or vice versa, as the optimisation objectives could vary. The forward progress also shows far greater focus on use of alternate fuels that actually changes the dynamics by a considerable extent. For CO2 abatement measures and carbon sequestration processes, the use of controls are moving to the next level of automation as more complexity is getting introduced. Electronics and electrical systems are now inseparable from the field of software and algorithms that embrace AI to create the right blend of self-controls and automation that limits human interventions as the complexities of the dynamic environment makes it impossible for humans to interact any more.
Software solutions together with drone systems and automation allow the process to be self-serving in delivering multi-objectives within the framework of optimisation; the caution however is that the final decision on the choices must include proper testing (in a test environment) before selection of the type of the AI based system as the number of options are on the increase and competing systems all vouch for the similar end-results.
Software progress should not be limited to cement production systems alone, but cement distribution and logistics as well. With tracking and tracing systems in place it is easy to match planning with execution where one can make a simulation of movements of cement deliveries across the demands of micro, mini and regional markets to arrive at the best overall distribution to attain the goals of sales and profitability; this need not be based on rule of thumb which has nothing to do with the realities on the ground where the situation is far too dynamic throughout the day. Merging planning algorithms with track and trace systems has everything ready to be used, only the lack of intent seems ominous for some. The leaders however have progressed considerably in this regard.

-Procyon Mukherjee

Concrete

Molecor Renews OCS Europe Certification Across Spanish Plants

Certification reinforces commitment to preventing microplastic pollution

Published

on

By

Shares



Molecor has renewed its OCS Europe certification for another year across all its production facilities in Spain under the Operation Clean Sweep (OCS) voluntary initiative, reaffirming its commitment to sustainability and environmental protection. The renewal underlines the company’s continued focus on preventing the unintentional release of plastic particles during manufacturing, with particular attention to safeguarding marine ecosystems from microplastic pollution.

All Molecor plants in Spain have been compliant with OCS Europe standards for several years, implementing best practices designed to avoid pellet loss and the release of plastic particles during the production of PVC pipes and fittings. The OCS-based management system enables the company to maintain strict operational controls while aligning with evolving regulatory expectations on microplastic prevention.

The renewed certification also positions Molecor ahead of newly published European regulations. The company’s practices are aligned with Regulation (EU) 2025/2365, recently adopted by the European Parliament, which sets out requirements to prevent pellet loss and reduce microplastic pollution across industrial operations.

Extending its sustainability commitment beyond its own operations, Molecor is actively engaging its wider value chain by informing suppliers and customers of its participation in the OCS programme and encouraging responsible microplastic management practices. Through these efforts, the company contributes directly to the United Nations Sustainable Development Goals, particularly SDG 14 ‘Life below water’, reinforcing its role as a responsible industrial manufacturer committed to environmental stewardship and long-term sustainability.

Continue Reading

Concrete

Coforge Launches AI-Led Data Cosmos Analytics Platform

New cloud-native platform targets enterprise data modernisation and GenAI adoption

Published

on

By

Shares



Coforge Limited has recently announced the launch of Coforge Data Cosmos, an AI-enabled, cloud-native data engineering and advanced analytics platform aimed at helping enterprises convert fragmented data environments into intelligent, high-performance data ecosystems. The platform strengthens Coforge’s technology stack by introducing a foundational innovation layer that supports cloud-native, domain-specific solutions built on reusable blueprints, proprietary IP, accelerators, agentic components and industry-aligned capabilities.

Data Cosmos is designed to address persistent enterprise challenges such as data fragmentation, legacy modernisation, high operational costs, limited self-service analytics, lack of unified governance and the complexity of GenAI adoption. The platform is structured around five technology portfolios—Supernova, Nebula, Hypernova, Pulsar and Quasar—covering the full data transformation lifecycle, from legacy-to-cloud migration and governance to cloud-native data platforms, autonomous DataOps and scaled GenAI orchestration.

To accelerate speed-to-value, Coforge has introduced the Data Cosmos Toolkit, comprising over 55 IPs and accelerators and 38 AI agents powered by the Data Cosmos Engine. The platform also enables Galaxy solutions, which combine industry-specific data models with the core technology stack to deliver tailored solutions across sectors including BFS, insurance, travel, transportation and hospitality, healthcare, public sector and retail.

“With Data Cosmos, we are setting a new benchmark for how enterprises convert data complexity into competitive advantage,” said Deepak Manjarekar, Global Head – Data HBU, Coforge. “Our objective is to provide clients with a fast, adaptive and AI-ready data foundation from day one.”

Supported by a strong ecosystem of cloud and technology partners, Data Cosmos operates across multi-cloud and hybrid environments and is already being deployed in large-scale transformation programmes for global clients.

Continue Reading

Concrete

India, Sweden Launch Seven Low-Carbon Steel, Cement Projects

Joint studies to cut industrial emissions under LeadIT

Published

on

By

Shares



India and Sweden have announced seven joint projects aimed at reducing carbon emissions in the steel and cement sectors, with funding support from India’s Department of Science and Technology and the Swedish Energy Agency.

The initiatives, launched under the LeadIT Industry Transition Partnership, bring together major Indian companies including Tata Steel, JK Cement, Ambuja Cements, Jindal Steel and Power, and Prism Johnson, alongside Swedish technology firms such as Cemvision, Kanthal and Swerim. Leading Indian academic institutions, including IIT Bombay, IIT-ISM Dhanbad, IIT Bhubaneswar and IIT Hyderabad, are also participating.

The projects will undertake pre-pilot feasibility studies on a range of low-carbon technologies. These include the use of hydrogen in steel rotary kilns, recycling steel slag for green cement production, and applying artificial intelligence to optimise concrete mix designs. Other studies will explore converting blast furnace carbon dioxide into carbon monoxide for reuse and assessing electric heating solutions for steelmaking.

India’s steel sector currently accounts for about 10–12 per cent of the country’s carbon emissions, while cement contributes nearly 6 per cent. Globally, heavy industry is responsible for roughly one-quarter of greenhouse gas emissions and consumes around one-third of total energy.

The collaboration aims to develop scalable, low-carbon industrial technologies that can support India’s net-zero emissions target by 2070. As part of the programme, Tata Steel and Cemvision will examine methods to convert steel slag into construction materials, creating a circular value chain for industrial byproducts.

Continue Reading

Trending News