Concrete
Process Control Solutions for the Future
Published
2 years agoon
By
admin
From the increased use of modern techniques of control to advanced software solutions, technology is accelerating cement processes in myriad ways. ICR looks at the economic impact of AI and automation on the cement sector.
The history of cement production dates back to 12,000 years ago. The earliest archaeological discovery of a consolidated whitewashed floor made from burned limestone and clay is found in modern-day Turkey. Around 800 BC, the Phoenicians had the knowledge that a mixture of burnt lime and volcanic ash, today called ‘pozzolana’, could be used to produce hydraulic lime, which was not only stronger than anything previously used, but also hardened under water. The Romans perfected it later with their process called, ‘opus caementicium,’ a type of concrete made of lime with aggregates of sand and crushed rock. No wonder the Colosseum and Pantheon in Rome, and the Hagia Sophia in Istanbul, all stand perfectly fine today.
But modern production of cement is million times bigger in scale and must be controlled to derive the benefits of cost, throughput and quality, sometimes several objective functions must be optimised to give the overall gain in terms of profit maximisation. The technology itself progressed in leaps and bounds to make allowance for both throughput increase and cost while the quality improved from one milestone to the next. The first cement standard for Portland cement was approved in Germany in 1878, defining the first test methods and minimum properties, with many other countries following suit.
Cement production and applications surged globally at the turn of the century. Since the 1900s, rotary kilns have replaced the original vertical shaft kilns, as they use radiative heat transfer, more efficient at higher temperatures. achieving a uniform clinkering temperature and producing stronger cement. Gypsum is now also added to the resulting mixture to control setting and ball mills are used to grind clinkers.
Other developments in the last century include calcium aluminate cements for better sulphate resistance, the blending of Rosendale (a natural hydraulic cement produced in New York) and Portland cements to make a durable and fast-setting cement in the USA, and the increased usage of cementitious materials to store nuclear waste. New technologies and innovations are constantly emerging to improve the sustainability, strength and applications of cement and concrete. Some advanced products incorporate fibres and special aggregates to create roof tiles and countertops, for example, whilst offsite manufacture is also gaining prominence with the rise of digitalisation and AI, which could reduce waste and improve efficiency and on-site working conditions. Cements and concretes are also being developed, which can absorb CO2 over their lifetimes, reducing the carbon footprint of the building material.
The focus of the current times is manifold – on the one hand cement process and technology experts have the job cut out to create sustainable solutions and on the other, the process control techniques have improved to embrace new digitisation techniques to better improve the following processes:
- Quarrying and preparation
- Close circuit blending systems that create the ideally suited raw mix
- Clinker kilning
- Cement grinding
The systems of the cement production control these operations to produce maximal quantity of the cement with prescribed quality and minimal cost. The quality also depends on many variables. The appropriate rate of the basic components determining the setting time, strength, heat of hydration, expansion, etc. is the most important. The free lime content (FLC) also influences the quality similarly to the size distribution and the relative surface area. A great many open and closed loop controls can be found in the cement production, however, the proper control of the operations-triplet proportioning-burning-grinding can ensure to reach the overall control aim, the other controls are auxiliary ones. The synthesis of this would aim at thermal efficiency parameters with use of different fuel mixes, alternate fuels included and the raw mix must be so blended such that a range of objective functions can be met that include Lumping, Burnability, High Heat of Hydration, Fast Setting, One Day, 3 Day, 7 Day, 28 Day Strength, etc.
The burnability parameters include lime saturation factor, silica ratio, af ratio, content of coarse quartz, content of coarse calcite, while the compositional parameters like content of C3S, MgO, C3A and presence of alkali. Silica ratio and other aspects could together influence the attainment of the quality objectives like fast setting or efficiency objectives like high heat of hydration. This is where control systems step in to play a decisive role to make adjustments in a number of parameters, while the production process remains continuous. Achieving stability of the process, where coal feed, kiln feed, raw mix, all have a myriad of parameters to be weighed against the objectives of productivity, efficiency and quality.
The AI to Z of Technology
Artificial intelligence (AI) today provides valuable decision support and control techniques in these uncertain environments. Two common techniques used in this field are artificial neural networks and fuzzy logic. Fuzzy logic is especially useful for processes that are difficult to control by conventional or discrete methods due to the lack of knowledge of quantitative relations between the inputs and outputs. Controls based on fuzzy logic employ a close-to-human language to describe the input-output relationships of the controlled process. The controller converts an expert knowledge-based control strategy into an automatic control strategy imposed on the process. Most control environments have steadily moved towards adoption of AI and fuzzy logic techniques as dynamic environments are impossible to model with any other tools and techniques unless we want to avoid the inter-play and friction of some of the control parameters.
Use of modern techniques of control have shown productivity gains (t/h) of 3 per cent and energy gains (Kcal/t) of 5 per cent compared to expert operators using controls. In cement milling, the productivity increased by 3.1 per cent and the energy savings were 2.9 per cent. In clinkerisation, there were increases from 1 to 3 per cent in the daily production, reductions from 2 to 4 per cent in energy consumption, reductions from 12 to 16 per cent in the variability of clinker quality requirements, and reduction of up to 10 per cent in the variability of the lifetime of the liner. In other clinker kilns, there were from 4 to 5 per cent reduction in fuel consumption, from 80 to 90 per cent decrease in variability and increase from 7 to 8 per cent in productivity.
Now the focus in controls have shifted to use of algorithms and software that would step in to make allowance on the selection of specific objective functions like quantity over efficiency or efficiency over quality or vice versa, as the optimisation objectives could vary. The forward progress also shows far greater focus on use of alternate fuels that actually changes the dynamics by a considerable extent. For CO2 abatement measures and carbon sequestration processes, the use of controls are moving to the next level of automation as more complexity is getting introduced. Electronics and electrical systems are now inseparable from the field of software and algorithms that embrace AI to create the right blend of self-controls and automation that limits human interventions as the complexities of the dynamic environment makes it impossible for humans to interact any more.
Software solutions together with drone systems and automation allow the process to be self-serving in delivering multi-objectives within the framework of optimisation; the caution however is that the final decision on the choices must include proper testing (in a test environment) before selection of the type of the AI based system as the number of options are on the increase and competing systems all vouch for the similar end-results.
Software progress should not be limited to cement production systems alone, but cement distribution and logistics as well. With tracking and tracing systems in place it is easy to match planning with execution where one can make a simulation of movements of cement deliveries across the demands of micro, mini and regional markets to arrive at the best overall distribution to attain the goals of sales and profitability; this need not be based on rule of thumb which has nothing to do with the realities on the ground where the situation is far too dynamic throughout the day. Merging planning algorithms with track and trace systems has everything ready to be used, only the lack of intent seems ominous for some. The leaders however have progressed considerably in this regard.
-Procyon Mukherjee

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.
11th Indian Cement Review Conference
9th Indian Cement Review Awards
Concrete
Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home
Published
3 weeks agoon
March 19, 2025By
admin
- Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
- Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
- Sand Finish: A subtle grainy effect that provides a sophisticated touch.
- Monochrome interiors where walls serve as a sleek backdrop.
- High-gloss or matte-painted walls that need a seamless base.
- Spaces with minimal décor where the walls themselves make a statement.
- Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
- 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
- Asymmetrical Shapes: For a bold and avant-garde touch.
- These patterns work best in bedrooms, study areas, or accent walls in open spaces.
- Statement walls in living rooms and foyers.
- Elegant dining areas where a touch of opulence is desired.
- Boutique-style bedrooms with a rich, textured finish.
- Children’s rooms or play areas, creating a fun and dynamic atmosphere.
- Bedrooms with a soothing pastel gradient for a calming effect.
- Dining spaces where a bold color fade adds character.
- Luxurious master bedrooms and dressing areas.
- Accent walls in dining rooms or home bars.
- Commercial spaces like boutiques and salons.
- Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
- Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
- Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
- Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
- Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Concrete
Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka
Published
3 weeks agoon
March 19, 2025By
admin
- Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
- Increases capacity primarily to meet growing demand in Western India along with existing regions
Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.
The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.
Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”
About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units. Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Showcasing India’s Supply Chain Revolution

Highlighting the Future of Smart, Sustainable Infra

Driving Sustainability Through Innovation

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Showcasing India’s Supply Chain Revolution

Highlighting the Future of Smart, Sustainable Infra

Driving Sustainability Through Innovation

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka
Trending News
-
Concrete2 weeks ago
Driving Sustainability Through Innovation
-
Economy & Market2 weeks ago
Showcasing India’s Supply Chain Revolution
-
Concrete3 weeks ago
Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home
-
Economy & Market2 weeks ago
Highlighting the Future of Smart, Sustainable Infra