Connect with us

Environment

Energy efficiency in clinker production

Published

on

Shares

The cover story captures the journey of an age-old system of grinding to the present one. It covers from mill internals to the use of grinding aids.

A cement clinker is usually ground using a ball mill. This hardware is generally divided into two or three chambers, with different size of grinding media. As the clinker particles are ground further, smaller media are more efficient at reducing the particle size even further.

Grinding can be either ‘open circuit’ or ‘closed circuit’. In an open-circuit system, the feed of incoming clinker is adjusted in such a way that it achieves the desired fineness of the product. In the present day, open circuit has become obsolete. However, in a closed-circuit system, coarse particles are separated from the finer product in a separator and then brought back to a mill for further grinding.

Most of the time, grinding systems are custom designed according to the client’s specific needs and conditions, which means that the process and design requires fine tuning from the standard list of available machines. The consultant can help optimise the existing grinding process to maximise output and return on investment. The consultant can assist in evaluating and optimising the present level of operation, modifying and/or upgrading the existing grinding system to achieve a maximum sustainable production rate and improve system availability.

Energy consumption, during grinding operation, whether raw material or finished products is of paramount importance in present circumstances. Therefore, any innovation to reduce energy consumption is always watched closely not only in India but across the globe. Power generation, distribution and consumption are focused areas to many current world issues, controlling the industry’s energy usage is a matter of interest to different federal governments across the globe. There are different programmes initiated at government level in different countries like Energy Star in the US; Perform, Achieve and Trade (PAT) in India; and CO2 taxes/trading in Europe.

In case of India, the threshold limit of 30,000 tonnes of oil equivalent (toe) has been defined as the cut-off limit criterion for any unit in the cement sector to be identified as designated consumer and to be covered in PAT. The scheme has identified 85 designated consumers from the cement sector.

The cement sector has been categorised on the basis of products and process involved into seven sub-sectors – Portland Pozzolana Cement (PPC), Ordinary Portland Cement (OPC), Portland Slag Cement (PPC), wet plants, white plants, grinding plants and clinkerisation plants. The total reported energy consumption of these designated consumers is about 15.01 mtoe. By the end of the first PAT cycle, the energy savings of 0.815 mtoe/year was achieved, which is around 12 per cent of the total national energy saving target assessed under PAT.

For the cement industry, there are three main drivers to energy consumption: electrical power, fuel, and demand for high-strength cement.

Figure 2 illustrates the wide variation in the cost of power across 14 countries. The average country cost of electrical power at an industrial level varies enormously.

Mill designs
It is important to know the process areas where most of the energy is consumed. Figure 1 shows the areas of high energy consumption in a cement plant. The numbers clearly indicate that grinding of both raw meal and cement needs highest attention. Grinding by design is a very inefficient process.

However, the ball mill has been the industry’s workhorse for over a century and has been one of the inefficient ways of operation. A little has changed over the years other than increase in the wear resistance of mill internals and the size of machine. The addition of closed circuiting and high-efficiency separators have improved the final quality of the product and have produced higher outputs. In the earlier days, vertical mills were confined to fuel grinding, progressively the advances, which took place such as spring-loaded rollers and higher pressure from the grinding elements to the material bed using hydraulic systems led to efficient cement grinding.

Raw milling
The hot air swept vertical mill became popular very quickly. Energy consumption, approximately to 50 per cent of the ball mill, and with drying capabilities, allowed processing of input materials of up to 20 per cent moisture content. The main energy issue was the high power consumption of mill fans, with pressure drops of 100 mbar is not uncommon with high nozzle ring velocities (>70m/s) and internal mill circulating loads of >1,000 per cent. Manufacturers have countered this generally satisfactorily with pressure drops reduced by lower nozzle ring velocities, and the addition of external spillage elevator recirculation systems plus higher-efficiency separators.

Better seal designs for mill roller assemblies and pull rods have reduced the inevitable inleaking air issue and its impact on power consumption. However, it remains a design where issues of wear and reliability are more challenging than for ball mills, and these issues have not diminished with increased scale. For raw grinding with relatively dry raw materials, the combination of the roller press and V separator is a viable alternative with far lower mill fan power.

Cement grinding
The technology development in cement grinding with roll press and vertical roller mills has taken a forward route. The development of roller presses in the 1980s started a spate of jobs like retrofitting to improve capacities and product quality. Many roll presses were retrofitted to ball mills as pre-grinders. The main benefit was lower Blaines, and relatively lower energy consumption. The first generation of presses suffered from stability problems when attempts were made to grind more finely by recirculating separator rejects. These problems are now largely resolved and the combination of a V and third-generation dynamic classifier separators together with a roller press can produce finished cement with high energy efficiency. However, in pure energy efficiency terms, the benefit of grinding power reduction is countered by the very high power required by mill fans. In addition, the absence of the heat generated in a ball mill and the high volume of air required by the vertical mill have required the provision of waste heat from cooler exhausts and/or auxiliary furnaces to dry raw materials and achieve a limited dehydration of gypsum.

Grinding in general
Considerations for grinding of coal and petcoke have been different and the same hardware cannot be used for both the jobs with same efficiency. Considering the properties of materials, some modifications are required.

While designing the equipment, the most difficult decision is to avoid overdesign by applying too many safety factors. Post-commissioning, audits often uncover a high contribution to poor energy efficiency from under-run equipment operating where it cannot perform efficiently.

Monitoring the key parameters of a running ball mill or a vertical roller mill is extreme and where majority of plants fail. For ball mills, ball charge level, lining and diaphragm condition must be monitored and maintained in near-optimum condition. For VRM feed rate and size, roller pressure, temperature and pressure measurements. The records of break downs or preventative maintenance are to be kept meticulously.

Grinding aids
Grinding aids can give benefits of 5-15 per cent in production but need to be continuously evaluated for cost effectiveness. The negative part is the cost factor that works against the benefits accrued. The benefit of aids on cement flow ability has to be considered, along with the added scope for reduction of cement clinker content with some modern additives.

Latest technologies
Cement is an energy-intensive industry in which the grinding circuits use more than 60 per cent of the total electrical energy consumed and account for most of the manufacturing cost. The requirements for the cement industry in the future are to reduce the use of energy in grinding and the emission of CO2 from the kilns. In recent years, the production of composite cements has been increasing for reasons concerned with process economics, energy reduction, ecology (mostly reduction of CO2 emission), conservation of resources and product quality/diversity. The most important properties of cement, such as strength and workability, are affected by its specific surface and by the fineness and width of the particle-size distribution. These can be modified to some extent by the equipment used in the grinding circuit, including its configuration and control.

Performance of grinding circuits has been improved in recent years by the development of machinery such as high-pressure grinding rolls (HPGR), Horomills, high-efficiency classifiers and vertical roller mills (VRM) for clinker grinding, which are more energy efficient than machinery. This has been in common use for many years such as tube mills. Energy-efficient equipment such as high-pressure grinding rolls, VRM, CKP pre-grinders, Cemex mills and Horomills are used at both finish grinding of cement and raw material-grinding stages due to higher energy consumption of conventional multi-compartment ball milling circuits.

Source: A masterclass in understanding and optimising cement plant energy consumption, by Lawrie Evans, EmCem Ltd, UK.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

India donates 225t of cement for Myanmar earthquake relief

Published

on

By

Shares

On 23 May 2025, the Indian Navy ship UMS Myitkyina arrived at Thilawa (MITT) port carrying 225 tonnes of cement provided by the Indian government to aid post-earthquake rebuilding efforts in Myanmar. As reported by the Global Light of Myanmar, a formal handover of 4500 50kg cement bags took place that afternoon. The Yangon Region authorities managed the loading of the cement onto trucks for distribution to the earthquake-affected zones.

Continue Reading

Concrete

Reclamation of Used Oil for a Greener Future

Published

on

By

Shares

In this insightful article, KB Mathur, Founder and Director, Global Technical Services, explores how reclaiming used lubricants through advanced filtration and on-site testing can drive cost savings, enhance productivity, and support a greener industrial future. Read on to discover how oil regeneration is revolutionising sustainability in cement and core industries.

The core principle of the circular economy is to redefine the life cycle of materials and products. Unlike traditional linear models where waste from industrial production is dumped/discarded into the environment causing immense harm to the environment;the circular model seeks to keep materials literally in continuous circulation. This is achievedthrough processes cycle of reduction, regeneration, validating (testing) and reuse. Product once
validated as fit, this model ensures that products and materials are reintroduced into the production system, minimising waste. The result? Cleaner and greener manufacturing that fosters a more sustainable planet for future generations.

The current landscape of lubricants
Modern lubricants, typically derived from refined hydrocarbons, made from highly refined petroleum base stocks from crude oil. These play a critical role in maintaining the performance of machinery by reducing friction, enabling smooth operation, preventing damage and wear. However, most of these lubricants; derived from finite petroleum resources pose an environmental challenge once used and disposed of. As industries become increasingly conscious of their environmental impact, the paramount importance or focus is shifting towards reducing the carbon footprint and maximising the lifespan of lubricants; not just for environmental reasons but also to optimise operational costs.
During operations, lubricants often lose their efficacy and performance due to contamination and depletion of additives. When these oils reach their rejection limits (as they will now offer poor or bad lubrication) determined through laboratory testing, they are typically discarded contributing to environmental contamination and pollution.
But here lies an opportunity: Used lubricants can be regenerated and recharged, restoring them to their original performance level. This not only mitigates environmental pollution but also supports a circular economy by reducing waste and conserving resources.

Circular economy in lubricants
In the world of industrial machinery, lubricating oils while essential; are often misunderstood in terms of their life cycle. When oils are used in machinery, they don’t simply ‘DIE’. Instead, they become contaminated with moisture (water) and solid contaminants like dust, dirt, and wear debris. These contaminants degrade the oil’s effectiveness but do not render it completely unusable. Used lubricants can be regenerated via advanced filtration processes/systems and recharged with the use of performance enhancing additives hence restoring them. These oils are brought back to ‘As-New’ levels. This new fresher lubricating oil is formulated to carry out its specific job providing heightened lubrication and reliable performance of the assets with a view of improved machine condition. Hence, contributing to not just cost savings but leading to magnified productivity, and diminished environmental stress.

Save oil, save environment
At Global Technical Services (GTS), we specialise in the regeneration of hydraulic oils and gear oils used in plant operations. While we don’t recommend the regeneration of engine oils due to the complexity of contaminants and additives, our process ensures the continued utility of oils in other applications, offering both cost-saving and environmental benefits.

Regeneration process
Our regeneration plant employs state-of-the-art advanced contamination removal systems including fine and depth filters designed to remove dirt, wear particles, sludge, varnish, and water. Once contaminants are removed, the oil undergoes comprehensive testing to assess its physico-chemical properties and contamination levels. The test results indicate the status of the regenerated oil as compared to the fresh oil.
Depending upon the status the oil is further supplemented with high performance additives to bring it back to the desired specifications, under the guidance of an experienced lubrication technologist.
Contamination Removal ? Testing ? Additive Addition
(to be determined after testing in oil test laboratory)

The steps involved in this process are as follows:
1. Contamination removal: Using advanced filtration techniques to remove contaminants.
2. Testing: Assessing the oil’s properties to determine if it meets the required performance standards.
3. Additive addition: Based on testing results, performance-enhancing additives are added to restore the oil’s original characteristics.

On-site oil testing laboratories
The used oil from the machine passes through 5th generation fine filtration to be reclaimed as ‘New Oil’ and fit to use as per stringent industry standards.
To effectively implement circular economy principles in oil reclamation from used oil, establishing an on-site oil testing laboratory is crucial at any large plants or sites. Scientific testing methods ensure that regenerated oil meets the specifications required for optimal machine performance, making it suitable for reuse as ‘New Oil’ (within specified tolerances). Hence, it can be reused safely by reintroducing it in the machines.
The key parameters to be tested for regenerated hydraulic, gear and transmission oils (except Engine oils) include both physical and chemical characteristics of the lubricant:

  • Kinematic Viscosity
  • Flash Point
  • Total Acid Number
  • Moisture / Water Content
  • Oil Cleanliness
  • Elemental Analysis (Particulates, Additives and Contaminants)
  • Insoluble

The presence of an on-site laboratory is essential for making quick decisions; ensuring that test reports are available within 36 to 48 hours and this prevents potential mechanical issues/ failures from arising due to poor lubrication. This symbiotic and cyclic process helps not only reduce waste and conserve oil, but also contributes in achieving cost savings and playing a big role in green economy.

Conclusion
The future of industrial operations depends on sustainability, and reclaiming used lubricating oils plays a critical role in this transformation. Through 5th Generation Filtration processes, lubricants can be regenerated and restored to their original levels, contributing to both environmental preservation and economic efficiency.
What would happen if we didn’t recycle our lubricants? Let’s review the quadruple impacts as mentioned below:
1. Oil Conservation and Environmental Impact: Used lubricating oils after usage are normally burnt or sold to a vendor which can be misused leading to pollution. Regenerating oils rather than discarding prevents unnecessary waste and reduces the environmental footprint of the industry. It helps save invaluable resources, aligning with the principles of sustainability and the circular economy. All lubricating oils (except engine oils) can be regenerated and brought to the level of ‘As New Oils’.
2. Cost Reduction Impact: By extending the life of lubricants, industries can significantly cut down on operating costs associated with frequent oil changes, leading to considerable savings over time. Lubricating oils are expensive and saving of lubricants by the process of regeneration will overall be a game changer and highly economical to the core industries.
3. Timely Decisions Impact: Having an oil testing laboratory at site is of prime importance for getting test reports within 36 to 48 hours enabling quick decisions in critical matters that may
lead to complete shutdown of the invaluable asset/equipment.
4. Green Economy Impact: Oil Regeneration is a fundamental part of the green economy. Supporting industries in their efforts to reduce waste, conserve resources, and minimise pollution is ‘The Need of Our Times’.

About the author:
KB Mathur, Founder & Director, Global Technical Services, is a seasoned mechanical engineer with 56 years of experience in India’s oil industry and industrial reliability. He pioneered ‘Total Lubrication Management’ and has been serving the mining and cement sectors since 1999.

Continue Reading

Concrete

Charting the Green Path

Published

on

By

Shares

The Indian cement industry has reached a critical juncture in its sustainability journey. In a landmark move, the Ministry of Environment, Forest and Climate Change has, for the first time, announced greenhouse gas (GHG) emission intensity reduction targets for 282 entities, including 186 cement plants, under the Carbon Credit Trading Scheme, 2023. These targets, to be enforced starting FY2025-26, are aligned with India’s overarching ambition of achieving net zero emissions by 2070.
Cement manufacturing is intrinsically carbon-intensive, contributing to around 7 per cent of global GHG emissions, or approximately 3.8 billion tonnes annually. In India, the sector is responsible for 6 per cent of total emissions, underscoring its critical role in national climate mitigation strategies. This regulatory push, though long overdue, marks a significant shift towards accountability and structured decarbonisation.
However, the path to a greener cement sector is fraught with challenges—economic viability, regulatory ambiguity, and technical limitations continue to hinder the widespread adoption of sustainable alternatives. A major gap lies in the lack of a clear, India-specific definition for ‘green cement’, which is essential to establish standards and drive industry-wide transformation.
Despite these hurdles, the industry holds immense potential to emerge as a climate champion. Studies estimate that through targeted decarbonisation strategies—ranging from clinker substitution and alternative fuels to carbon capture and innovative product development—the sector could reduce emissions by 400 to 500 million metric tonnes by 2030.
Collaborations between key stakeholders and industry-wide awareness initiatives (such as Earth Day) are already fostering momentum. The responsibility now lies with producers, regulators and technology providers to fast-track innovation and investment.
The time to act is now. A sustainable cement industry is not only possible—it is imperative.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds