Connect with us

Concrete

Why CCUS Matters for Cement

Published

on

Shares

Paul Baruya, Director of Strategy and Sustainability, FutureCoal, suggests that the next decade will determine whether CCUS scales from demonstration to a mainstream pathway for net-zero cement.

Cement forms the essential foundation of modern infrastructure—homes, roads, ports, hospitals, wind turbine bases, and transmission pylons. It is also one of the most challenging industrial products to decarbonise at scale. That’s why carbon capture, utilisation and storage (CCUS)—has shifted from a “nice to have” to a strategic necessity for many credible net-zero pathways.
Annual carbon dioxide (CO2) emissions from cement are around 1.6 Gt worldwide and could more than double by 2050. To many, decarbonisation involves replacing fuels, but cement differs: a significant portion of its emissions comes from chemical processes rather than fuel combustion.
Cement’s climate footprint is significant. Global cement production totals around 4 billion tonnes per year, produced across more than 3,100 plants worldwide. At this scale, even relatively modest emissions intensity results in substantial absolute emissions. As a result, cement production is widely estimated to account for around 7–8 per cent of global CO2 emissions.
A key step in cement production is the creation of clinker, an intermediate product that is ground into cement. Clinker forms by heating limestone (calcium carbonate), which breaks down into lime (calcium oxide) and releases CO2. Even with a kiln powered entirely by zero-carbon electricity, the calcination process will still emit CO2.
FutrureCoal’s Sustainable Coal Stewardship explores solutions for fossil fuel users. For example, clinker substitution using coal fly ash can significantly reduce emissions; however, it cannot eliminate the chemical release of CO2. CCUS is one of the few mature options capable of substantially removing the remaining CO2.
The IPCC considers cement a “hard-to-abate” sector. In its Sixth Assessment Report (AR6), it states that CCS is crucial to eliminate calcination emissions, which account for 60 per cent of GHG emissions in modern cement plants (IPCC). Worldwide, CCUS will deliver two-thirds of cement sector emissions reductions by mid-century (CemNet+1).

Decarbonisation is not simple, there are four considerations:

  • Both energy use and chemistry drive emissions, where calcination is intrinsic to conventional clinker production (hence the IPCC’s emphasis on CCS).\
  • Kilns operate at high temperatures of 1,450°C; electrifying heat is theoretically possible but difficult to retrofit and expensive at today’s scale.
  • Plants are long-lived assets that last for decades; replacement cycles are slow, so retrofits and add-ons (such as CCS) become vital.
  • Cement is a low-margin bulk material. A slight cost increase per tonne matters in competitive markets—yet deep decarbonisation raises costs before policy and procurement catchup.

No single capture technology fits all plants, a variety is needed. These methods begin with proven post-combustion capture, then incorporate advanced, process-specific, and next-generation technologies as plants develop, energy systems decarbonise, and transport and storage infrastructure expand.

  • A mine-based post-combustion capture is the most advanced, already operating at a commercial scale. It captures CO2 from flue gases after combustion and calcination, making it suitable for retrofitting, but it is energy-intensive.
  • Oxyfuel combustion burns fuel in pure oxygen, producing a CO2-rich exhaust that is easier to capture, although it requires major modifications to the kiln and consumes significant energy for oxygen production.
  • Calcium looping leverages lime’s natural affinity for CO2, suitable for cement but complex and not widespread. Technologies like LEILAC capture CO2 during calcination with high purity and lower energy use, but they still require clean energy or additional methods to reach net zero.

Global cement demand is strongly connected to urbanisation, infrastructure development, and housing. Mature markets may plateau, while emerging markets can experience rapid growth.

India: A major decarbonisation opportunity
India is central to the global cement transition for three reasons: scale, growth trajectory, and the policy imperative to reconcile development with climate commitments.
The US Geological Survey (USGS) estimates India produced ~420 Mt in 2023 and ~450 Mt in 2024. That makes India one of the world’s largest producers, with continued capacity additions expected as infrastructure and housing demand grow.
Cement accounts for approximately 7–8 per cent of global CO2 emissions and around 5.8 per cent of India’s CO2 emissions in 2022, (GCCA). As India works toward its 2070 net-zero target, carbon capture, utilisation and storage (CCUS) will be an important component of its longer-term decarbonisation pathway.
India also highlights a broader reality: cement decarbonisation cannot rely on a single solution. Instead, it will require a combination of measures, likely including:

  • Lower clinker-to-cement ratios and supplementary cementitious materials,
  • Alternative fuels and efficiency,
  • For deep abatement, carbon capture for the remaining process emissions.

Challenges for CCS in cement
Carbon capture at cement plants is technically feasible, but still faces significant practical and economic challenges:
A challenging gas stream: Cement flue gas contains CO2 along with impurities and exhibits variable flow and temperature conditions. Capture units (amines, membranes, calcium looping, oxyfuel, etc.) need to be integrated carefully to avoid disrupting kiln operations.
Energy penalty and heat management: Many capture systems require significant energy, such as steam for solvent regeneration. Providing that energy without merely shifting emissions elsewhere is a design challenge; it encourages plants to research and develop low-energy solutions, waste heat recovery, blending low-carbon fuels, or all of the above.
Space constraints and retrofit limitations: Older plants may lack the physical footprint for large-scale capture equipment, compression, liquefaction, and CO2-handling infrastructure—especially in land-constrained industrial clusters.
Transport and storage are not “at the factory gate”: Even if capture is successful, you still need pipelines, shipping terminals, injection wells, permits, monitoring, and long-term liability frameworks. Cement CCS progresses most quickly where shared CO2 infrastructure is in place.
This is why projects increasingly cluster around hubs and why policy support and shared infrastructure are often the difference between pilot and commercial deployment.

Examples of the latest carbon capture on cement plants
A few projects demonstrate where the sector currently stands, progressing from pilots and studies into first-wave industrial deployment.
Brevik CCS (Norway): Heidelberg Materials inaugurated Brevik CCS in mid-2025, described as the world’s first industrial-scale CCS facility in the cement industry, designed to capture ~0.4 Mt CO2per year (Heidelberg Materials). CO2 will be shipped to Norway’s Northern Lights storage facility and the capture volume will equal half the plant’s total emissions at full capture (Reuters). Brevik is a blueprint to demonstrate end-to-end integration from capture to storage.
Padeswood (UK): Heidelberg’s cement plant at Padeswood has its CCS project construction slated to start in 2025 and net-zero cement production targeted for 2029 (Reuters). This underscores how public funding and CO2 infrastructure (Liverpool Bay storage) can unlock investment timelines.
LEILAC (Belgium): The EU-supported LEILAC project at Heidelberg Materials’ Lixhe cement plant in Belgium is testing a novel approach that targets process emissions rather than combustion emissions. The pilot facility is designed to capture approximately 18,000 tonnes of CO2 per year, with the follow-on LEILAC-2 phase exploring pathways to scale the technology toward commercial deployment (CINEA).
North America: In the United States, Holcim’s Ste. Genevieve cement plant has completed a front-end engineering and design (FEED) study assessing commercial-scale carbon capture, targeting up to 95 per cent of total CO2 emissions using an Air Liquide capture technology (OSTI). While not every FEED study progresses to a final investment decision, these projects provide important insight into where cement-sector carbon capture could realistically be heading.
India is exploring multiple technical approaches instead of a single solution. The country’s strategy involves government-backed testbeds to reduce risks in real-world plant conditions and industry roadmaps that show CCS/CCUS is essential for deep emission cuts. The Indian government is establishing five CCU testbeds in the cement industry through a public–private partnership (ETInfra.com+1). It focuses on hubs and storage options as enabling infrastructure to develop at scale (GCCA). India has launched a first-of-its-kind cluster of five CCU testbeds for the cement sector, organised as academia–industry pilots under a PPP model (ETInfra.com+1) including:

  • A pilot that captures CO2 via oxygen-enhanced calcination and converts it into lightweight concrete blocks and olefins (Ballabhgarh, Haryana, with JK Cement / NCCBM), and
  • A demonstration of carbon-negative mineralisation that locks CO2 into solid minerals (IIT Kanpur + JSW Cement) (ETInfra.com)
    These testbeds aim to show the real-world performance of capture and utilisation options—capture rates, product quality, energy needs, operability, and integration with kiln systems—before scaling up to full commercial units.

Why the “hubs + storage” framing matters for India? Capture at plant level is only part of the solution: meaningful scale also relies on gas transport, permanent storage, and the development of CO2 hubs (Clean Energy Ministerial+1). This hub approach is particularly relevant because it can:

  • Reduce unit costs through shared compression/transport infrastructure,
  • Concentrate on early projects where storage/transport is most feasible, and
  • Give financiers confidence that captured CO2 has a viable end-point (storage or durable utilisation) rather than becoming stranded.

The bottom line
Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that, absent a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.
The emergence of operational projects such as Brevik, the expansion of hub-linked initiatives across Europe, and a growing pipeline of pilots and front-end engineering studies indicate that the sector is beginning to move from ambition to execution. The coming decade will be decisive in determining whether CCS remains a premium, limited pathway, or becomes a mainstream industrial standard for delivering net-zero cement.

About the author:
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, is a strategy and sustainability leader shaping FutureCoal’s vision for the role of coal in a net-zero future, bringing deep expertise in energy markets, emissions modelling, and transition pathways.

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares
Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Concrete

Industry Bodies Call for Wider Use of Cement Co-Processing

Joint statement seeks policy support for sustainable waste management

Published

on

By

Shares
Leading industry organisations have called for stronger policy support to accelerate the adoption of cement industry co-processing as a sustainable solution for managing non-recyclable and non-reusable waste. In a joint statement, bodies including the Global Cement and Concrete Association, European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council highlighted the role co-processing can play in addressing the growing global waste challenge.
Co-processing enables the use of waste as an alternative to fossil fuels in cement kilns, while residual ash is incorporated into cementitious materials, resulting in a zero-waste process. The approach supports both energy recovery and material recycling, complements conventional recycling systems and reduces reliance on landfill infrastructure. It is primarily applied to waste streams that are contaminated or unsuitable for recycling.
The organisations noted that co-processing is already recognised in regions such as Europe, India, Latin America and North America, operating under regulated frameworks to ensure safety, emissions control and transparency. However, adoption remains uneven globally, with some plants achieving over 90 per cent fuel substitution while others lack enabling policies.
The statement urged governments and institutions to formally recognise co-processing in waste management frameworks, streamline environmental permitting, incentivise waste collection and pre-treatment, account for recycled material content in national targets, and support public-private partnerships. The call comes amid rising global waste volumes, which are estimated at over 11 billion tonnes annually, with unmanaged waste contributing to greenhouse gas emissions, pollution and health risks.

Continue Reading

Concrete

Why Cement Needs CCUS

Published

on

By

Shares

Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds