Connect with us

Concrete

Why CCUS Matters for Cement

Published

on

Shares

Paul Baruya, Director of Strategy and Sustainability, FutureCoal, suggests that the next decade will determine whether CCUS scales from demonstration to a mainstream pathway for net-zero cement.

Cement forms the essential foundation of modern infrastructure—homes, roads, ports, hospitals, wind turbine bases, and transmission pylons. It is also one of the most challenging industrial products to decarbonise at scale. That’s why carbon capture, utilisation and storage (CCUS)—has shifted from a “nice to have” to a strategic necessity for many credible net-zero pathways.
Annual carbon dioxide (CO2) emissions from cement are around 1.6 Gt worldwide and could more than double by 2050. To many, decarbonisation involves replacing fuels, but cement differs: a significant portion of its emissions comes from chemical processes rather than fuel combustion.
Cement’s climate footprint is significant. Global cement production totals around 4 billion tonnes per year, produced across more than 3,100 plants worldwide. At this scale, even relatively modest emissions intensity results in substantial absolute emissions. As a result, cement production is widely estimated to account for around 7–8 per cent of global CO2 emissions.
A key step in cement production is the creation of clinker, an intermediate product that is ground into cement. Clinker forms by heating limestone (calcium carbonate), which breaks down into lime (calcium oxide) and releases CO2. Even with a kiln powered entirely by zero-carbon electricity, the calcination process will still emit CO2.
FutrureCoal’s Sustainable Coal Stewardship explores solutions for fossil fuel users. For example, clinker substitution using coal fly ash can significantly reduce emissions; however, it cannot eliminate the chemical release of CO2. CCUS is one of the few mature options capable of substantially removing the remaining CO2.
The IPCC considers cement a “hard-to-abate” sector. In its Sixth Assessment Report (AR6), it states that CCS is crucial to eliminate calcination emissions, which account for 60 per cent of GHG emissions in modern cement plants (IPCC). Worldwide, CCUS will deliver two-thirds of cement sector emissions reductions by mid-century (CemNet+1).

Decarbonisation is not simple, there are four considerations:

  • Both energy use and chemistry drive emissions, where calcination is intrinsic to conventional clinker production (hence the IPCC’s emphasis on CCS).\
  • Kilns operate at high temperatures of 1,450°C; electrifying heat is theoretically possible but difficult to retrofit and expensive at today’s scale.
  • Plants are long-lived assets that last for decades; replacement cycles are slow, so retrofits and add-ons (such as CCS) become vital.
  • Cement is a low-margin bulk material. A slight cost increase per tonne matters in competitive markets—yet deep decarbonisation raises costs before policy and procurement catchup.

No single capture technology fits all plants, a variety is needed. These methods begin with proven post-combustion capture, then incorporate advanced, process-specific, and next-generation technologies as plants develop, energy systems decarbonise, and transport and storage infrastructure expand.

  • A mine-based post-combustion capture is the most advanced, already operating at a commercial scale. It captures CO2 from flue gases after combustion and calcination, making it suitable for retrofitting, but it is energy-intensive.
  • Oxyfuel combustion burns fuel in pure oxygen, producing a CO2-rich exhaust that is easier to capture, although it requires major modifications to the kiln and consumes significant energy for oxygen production.
  • Calcium looping leverages lime’s natural affinity for CO2, suitable for cement but complex and not widespread. Technologies like LEILAC capture CO2 during calcination with high purity and lower energy use, but they still require clean energy or additional methods to reach net zero.

Global cement demand is strongly connected to urbanisation, infrastructure development, and housing. Mature markets may plateau, while emerging markets can experience rapid growth.

India: A major decarbonisation opportunity
India is central to the global cement transition for three reasons: scale, growth trajectory, and the policy imperative to reconcile development with climate commitments.
The US Geological Survey (USGS) estimates India produced ~420 Mt in 2023 and ~450 Mt in 2024. That makes India one of the world’s largest producers, with continued capacity additions expected as infrastructure and housing demand grow.
Cement accounts for approximately 7–8 per cent of global CO2 emissions and around 5.8 per cent of India’s CO2 emissions in 2022, (GCCA). As India works toward its 2070 net-zero target, carbon capture, utilisation and storage (CCUS) will be an important component of its longer-term decarbonisation pathway.
India also highlights a broader reality: cement decarbonisation cannot rely on a single solution. Instead, it will require a combination of measures, likely including:

  • Lower clinker-to-cement ratios and supplementary cementitious materials,
  • Alternative fuels and efficiency,
  • For deep abatement, carbon capture for the remaining process emissions.

Challenges for CCS in cement
Carbon capture at cement plants is technically feasible, but still faces significant practical and economic challenges:
A challenging gas stream: Cement flue gas contains CO2 along with impurities and exhibits variable flow and temperature conditions. Capture units (amines, membranes, calcium looping, oxyfuel, etc.) need to be integrated carefully to avoid disrupting kiln operations.
Energy penalty and heat management: Many capture systems require significant energy, such as steam for solvent regeneration. Providing that energy without merely shifting emissions elsewhere is a design challenge; it encourages plants to research and develop low-energy solutions, waste heat recovery, blending low-carbon fuels, or all of the above.
Space constraints and retrofit limitations: Older plants may lack the physical footprint for large-scale capture equipment, compression, liquefaction, and CO2-handling infrastructure—especially in land-constrained industrial clusters.
Transport and storage are not “at the factory gate”: Even if capture is successful, you still need pipelines, shipping terminals, injection wells, permits, monitoring, and long-term liability frameworks. Cement CCS progresses most quickly where shared CO2 infrastructure is in place.
This is why projects increasingly cluster around hubs and why policy support and shared infrastructure are often the difference between pilot and commercial deployment.

Examples of the latest carbon capture on cement plants
A few projects demonstrate where the sector currently stands, progressing from pilots and studies into first-wave industrial deployment.
Brevik CCS (Norway): Heidelberg Materials inaugurated Brevik CCS in mid-2025, described as the world’s first industrial-scale CCS facility in the cement industry, designed to capture ~0.4 Mt CO2per year (Heidelberg Materials). CO2 will be shipped to Norway’s Northern Lights storage facility and the capture volume will equal half the plant’s total emissions at full capture (Reuters). Brevik is a blueprint to demonstrate end-to-end integration from capture to storage.
Padeswood (UK): Heidelberg’s cement plant at Padeswood has its CCS project construction slated to start in 2025 and net-zero cement production targeted for 2029 (Reuters). This underscores how public funding and CO2 infrastructure (Liverpool Bay storage) can unlock investment timelines.
LEILAC (Belgium): The EU-supported LEILAC project at Heidelberg Materials’ Lixhe cement plant in Belgium is testing a novel approach that targets process emissions rather than combustion emissions. The pilot facility is designed to capture approximately 18,000 tonnes of CO2 per year, with the follow-on LEILAC-2 phase exploring pathways to scale the technology toward commercial deployment (CINEA).
North America: In the United States, Holcim’s Ste. Genevieve cement plant has completed a front-end engineering and design (FEED) study assessing commercial-scale carbon capture, targeting up to 95 per cent of total CO2 emissions using an Air Liquide capture technology (OSTI). While not every FEED study progresses to a final investment decision, these projects provide important insight into where cement-sector carbon capture could realistically be heading.
India is exploring multiple technical approaches instead of a single solution. The country’s strategy involves government-backed testbeds to reduce risks in real-world plant conditions and industry roadmaps that show CCS/CCUS is essential for deep emission cuts. The Indian government is establishing five CCU testbeds in the cement industry through a public–private partnership (ETInfra.com+1). It focuses on hubs and storage options as enabling infrastructure to develop at scale (GCCA). India has launched a first-of-its-kind cluster of five CCU testbeds for the cement sector, organised as academia–industry pilots under a PPP model (ETInfra.com+1) including:

  • A pilot that captures CO2 via oxygen-enhanced calcination and converts it into lightweight concrete blocks and olefins (Ballabhgarh, Haryana, with JK Cement / NCCBM), and
  • A demonstration of carbon-negative mineralisation that locks CO2 into solid minerals (IIT Kanpur + JSW Cement) (ETInfra.com)
    These testbeds aim to show the real-world performance of capture and utilisation options—capture rates, product quality, energy needs, operability, and integration with kiln systems—before scaling up to full commercial units.

Why the “hubs + storage” framing matters for India? Capture at plant level is only part of the solution: meaningful scale also relies on gas transport, permanent storage, and the development of CO2 hubs (Clean Energy Ministerial+1). This hub approach is particularly relevant because it can:

  • Reduce unit costs through shared compression/transport infrastructure,
  • Concentrate on early projects where storage/transport is most feasible, and
  • Give financiers confidence that captured CO2 has a viable end-point (storage or durable utilisation) rather than becoming stranded.

The bottom line
Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that, absent a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.
The emergence of operational projects such as Brevik, the expansion of hub-linked initiatives across Europe, and a growing pipeline of pilots and front-end engineering studies indicate that the sector is beginning to move from ambition to execution. The coming decade will be decisive in determining whether CCS remains a premium, limited pathway, or becomes a mainstream industrial standard for delivering net-zero cement.

About the author:
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, is a strategy and sustainability leader shaping FutureCoal’s vision for the role of coal in a net-zero future, bringing deep expertise in energy markets, emissions modelling, and transition pathways.

Concrete

FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe

Published

on

By

Shares

FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.

FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.

Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.

Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”

The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.

FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.

As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.

Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”

For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.

“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.

This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.

 

Continue Reading

Concrete

Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook

Published

on

By

Shares

Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement

Mumbai

Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.

The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.

The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.

Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.

Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”

He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”

Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”

CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.

Continue Reading

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares

Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds