Connect with us

Concrete

We are actively working on sludge utilisation

Published

on

Shares

Dr Yogendra Kanitkar, VP – Research and Development, Pi Green Innovations, discusses groundbreaking, scalable clean-tech solutions.

As the world races to combat climate change, a simple observation sparked a powerful vision for a pollution-free tomorrow. Dr Yogendra Kanitkar, VP – Research and Development, Pi Green Innovations, talks to Kanika Mathur about how filter-less technology is changing the game – from capturing soot to permanently sequestering CO2 in building materials. Read on to explore how this startup is turning industrial waste into climate solutions.

Can you briefly introduce Pi Green Innovations and its mission for a pollution-free tomorrow?
Pi Green Innovations is a clean tech startup. Our founders are Irfan Pathan, Shantanu Sonaikar, and Rizwan Shaikh. We started with a vision of a pollution-free tomorrow. Our founder, Rizwan Shaikh, observed the dust accumulation on AC filters and realised Delhi’s air pollution was a massive issue. Inspired to create a solution, he began searching for a filterless technology to clean air. That’s how the initial Carbon Cutter machine was conceptualised. The first application was for diesel generators. In 2012–2013, the National Green Tribunal (NGT) ordered diesel generator operators to install Retrofit Emission Control Devices (RECDs) to capture more than 70 per cent of particulate matter. This initially rolled out in Delhi NCR and later became mandatory nationwide.
We invented a filterless technology using electrostatic precipitation (ESP) to capture soot from diesel generators without interfacing with the engine. The soot is collected in a separate tank or vessel that can be cleaned later. This innovation gained traction, and major diesel generator OEMs became our channel partners, certifying and fitting our devices to their generators.
Later, some customers asked if we could also capture gaseous emissions like SOx and NOx. While exploring this, we accidentally discovered that our technology had a greater affinity for capturing CO2. This led to the birth of the Net Zero Machine — a point-source greenhouse gas capture device that converts CO2 into carbonates using accelerated mineral carbonation technology.
To our knowledge, we are the only company in India to operate this technology at such a large scale. While typical lab-scale pilots capture around 1 tonne of CO2 per day, our largest pilot with an Institutional Thermal Power Plant Operator which will be commissioned soon. It will two tonnes of CO2 per day, operational for 21 consecutive days.
Our focus is not just on carbon capture but on carbon utilisation — turning captured CO2 into building materials like bricks, aggregates and road fill. This provides a scalable solution to address industrial emissions while creating valuable byproducts.

How does your Net Zero Machine contribute to carbon capture and green cement production?
To understand our contribution, you first need to understand how cement is produced. Cement production typically involves calcining dolomite to form clinker — the main binding agent in cement. Our ethos is to use industrial waste to capture CO2. We have developed 10 different chemistries with the Net Zero Machine tailored for hard-to-abate sectors like cement, steel, petrochemicals, FMCG and others. For instance, if we are operating at a thermal power plant, we use the fly ash generated there along with other chemicals. When the flue gas passes through the Net Zero Machine, it reacts to form a sludge that self-hardens upon curing. This sludge can be moulded into bricks, road fill, coarse aggregates and other building materials. Importantly, the CO2 captured is permanently sequestered within the solid material — it will not release back unless heated to above 600°C. Unlike other technologies, like amine-based or retisol systems that produce pure CO2 gas, our process embeds CO2 into solid building materials, ensuring long-term storage.
In the cement industry context, let’s say we are working with a steel manufacturer. Normally, blast furnace slag is sold as a cement additive. In our case, we carbonate the industrial waste like slag — through the Net Zero Machine. The carbonation adds CO2 mass into the material, which can then be used as a substitute for clinker or other additives in cement production. For example, if you start with one tonne of blast furnace slag and add 500 kg of CO2 during carbonation, you end up with 1.5 tonnes of carbonated slag. Chemically, the properties remain largely similar.
Thus, instead of disturbing the existing symbiosis between industries like steel and cement, we add value by enhancing the material mass and permanently sequestering carbon — directly contributing to the decarbonisation of the cement industry.

What makes your carbon-negative bricks unique compared to conventional building materials?
They are different in two major aspects. First, if you look at how traditional bricks are made, you take sand, add a binder and then bake the bricks at high temperatures. Each of these steps requires a certain amount of energy, and the biggest energy input is during the baking process, where fossil fuels are burned, emitting CO2.
Now, when you use our bricks, because they are made from industrial waste, there is no CO2 output associated with the raw material itself. You are avoiding emissions by substituting traditional bricks with our product. This is known as an ‘avoidance credit’ or avoided CO2 — you are preventing a certain amount of CO2 emissions by choosing a product with a lower carbon footprint.
The second aspect is the way we manufacture our bricks. We do not bake them. Instead, the bricks are sun-dried and carbonated. The industrial waste, like blast furnace slag or fly ash, is carbonated and self-hardens to form the brick. This means the brick already has captured and sequestered CO2 stored within it.
So, in our product, you have two forms of CO2 benefits: one is captured CO2, and the other is avoided CO2. When you combine these two, that becomes our unique selling proposition compared to normal bricks. That’s why we call them carbon-negative bricks.

How scalable is your Net Zero solution for industries like cement manufacturing?
For the cement industry, scalability is built into the core of our Net Zero solution. Our machine is entirely modular. What we usually propose to clients is: install one unit first, see how it works and then scale up. We have the flexibility to install up to a hundred units in a facility. It is very scalable and modular — you can easily grow based on requirements.
Now, the scaling isn’t purely linear or exponential, but it definitely scales, and there’s a cost curve based on techno-economic analysis where we help clients determine the optimum amount of CO2 they want to capture.

In your view, how critical is CCUS technology for India’s decarbonisation journey, especially in heavy industries?
It is highly critical. If you are exporting to carbon-sensitive markets, you are likely to be hit with a carbon tariff. The Carbon Border Adjustment Mechanism (CBAM) is one such example. Even within India, the Carbon Credit Trading Scheme (CCTS) has been notified, and around 283 entities have been obligated to reduce their CO2 footprints. So, Indian industries should wake up to this reality. If you want to remain competitive in foreign markets, adopting CCUS is non-negotiable.
Specifically for cement manufacturers — and speaking frankly — the margins are razor-thin. Steel manufacturers might still afford a capture cost of $50 per tonne of CO2, but for cement companies that’s much harder. That’s where we come in. Our cost of CO2 capture is significantly lower than conventional market solutions. We can achieve capture costs of less than $25 to $30 per tonne. That’s a game-changer.

What future innovations is Pi Green working on to further advance sustainable construction practices?
There are two broad approaches we are pursuing under Project Net Zero. First, under carbon capture utilisation, we are working on using the sludge generated from industrial waste in very innovative ways to sequester CO2 and form different products out of it. That’s an active vertical.
The second vertical involves evaluating whether our technology can be coupled with Compressed Biogas (CBG) plants. In CBG plants, a major impurity in the biogas is CO2. If we remove that CO2, we can increase the purity of the fuel, turning it into high-quality PNG or CNG. This purified fuel can then be used in internal combustion engines and other applications.
Another interest for us in the near future is to evaluate if NetZero Technology can be coupled with coal gasification to produce blue hydrogen.
Besides that, we are actively working on sludge utilisation — finding multiple pathways to make valuable products from the byproducts of the Net Zero process.
Those are the three major innovations we are actively working on.

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News