Economy & Market
Optimising Cement Grinding
Published
1 year agoon
By
admin
Kanika Mathur explores the role of grinding aids in enhancing the efficiency and sustainability of cement production by reducing energy consumption, improving particle size distribution, and extending equipment life.
The grinding process is a crucial step in cement production, directly impacting the final quality and efficiency of cement manufacturing. With growing demands for energy efficiency, cost optimisation, and sustainable production, cement manufacturers are continuously seeking ways to improve grinding operations. Grinding aids, introduced into the process, have emerged as an essential component in achieving these objectives by enhancing the efficiency of
grinding mills and improving the performance of cement. This article explores the significance of the grinding process, the challenges faced in cement grinding, and the role of grinding aids in optimising cement manufacturing.
The Importance of the Grinding Process in Cement Manufacturing
Grinding is a fundamental process in cement production, where clinker, gypsum, and other additives are ground into fine powder to create the final product. The fineness of cement particles influences the hydration reaction, strength development, and overall durability of the cement. The efficiency of the grinding process directly affects the energy consumption, production costs, and environmental impact of cement plants.
The grinding process primarily takes place in ball mills, vertical roller mills (VRMs), and roller presses. Each of these grinding technologies has its advantages and limitations, influencing factors such as energy consumption, operational efficiency, and product quality. In recent years, there has been a shift towards more energy-efficient grinding systems, such as VRMs and roller presses, which offer better control over particle size distribution and reduce specific energy consumption.
Grinding Technologies
The grinding process is a critical component of cement manufacturing, influencing energy consumption, production efficiency, and product quality. Traditional ball mills, vertical roller mills (VRMs), and roller presses are the primary grinding technologies used in the industry. While ball mills have been widely used, they are energy-intensive and require frequent maintenance. VRMs and roller presses, on the other hand, offer better energy efficiency and control over particle size distribution, making them attractive alternatives. The shift toward advanced grinding systems has helped cement manufacturers reduce operational costs and improve sustainability.
However, cement grinding presents several challenges, including high energy consumption, inconsistencies in particle size distribution, and equipment wear. Grinding consumes nearly 60 to 70 per cent of a cement plant’s total electricity, making it one of the most energy-intensive processes. Additionally, friction during grinding generates heat, leading to agglomeration and efficiency losses. Optimising grinding operations requires careful control of raw materials, mill performance, and energy inputs to ensure sustainable and cost-effective production.
Ashok Dembla, Director, KhD Humboldt says, “The use of alternative fuels and raw materials (AFR) is continuously evolving within the cement industry. As a machinery supplier, we are adapting to these changes by providing advanced solutions for handling and processing AFR. One of our most significant innovations is the PyroRotor, an equipment designed specifically for feeding up to 85 per cent of alternative fuels into the pyroclone, which is far beyond what conventional methods can achieve. This has greatly enhanced our ability to replace traditional fuels with more sustainable alternatives.”
“In addition, we have developed solutions to address nitrogen oxide (NOx) emissions, a critical environmental concern. Our NOx reduction equipment significantly minimises NOx generation during the production process, helping plants meet stringent regulatory requirements” he adds.
Grinding aids play a vital role in enhancing grinding efficiency by reducing agglomeration, improving dispersion, and minimising energy consumption. Chemical additives such as amine-based compounds, glycols, and organic acids help improve cement properties by ensuring better flowability, reducing coating on mill internals, and extending equipment life. These additives also enhance cement hydration, leading to stronger and more durable concrete. As cement manufacturers seek ways to reduce costs and carbon footprints, grinding aids have become an essential tool in improving overall plant performance.
Looking ahead, the future of grinding in the cement industry will be shaped by advancements in eco-friendly grinding aids, digital process optimisation, and AI-driven automation. Research into bio-based and waste-derived additives is gaining traction, as companies aim to align with global sustainability goals. Additionally, integrating digital technologies into grinding operations will allow real-time monitoring and process control, further enhancing efficiency. By embracing these innovations, the cement industry can achieve greater sustainability, reduce emissions, and enhance profitability while maintaining high-quality production standards.
Challenges in Cement Grinding
Despite advancements in grinding technology, cement manufacturers still face several challenges in optimising the grinding process. Some of the key challenges include:
Energy Consumption: Grinding is an energy-intensive process, accounting for nearly 60 to 70 per cent of the total electricity consumption in a cement plant. The high energy demand for clinker grinding results in increased operational costs and contributes to CO2 emissions. Reducing energy consumption while maintaining cement quality remains a primary goal for manufacturers.
Particle Size Distribution: Achieving the right particle size distribution (PSD) is crucial for cement performance. A well-optimised PSD improves the workability of concrete, enhances strength development, and reduces the risk of segregation. However, variations in raw materials, mill operations, and grinding media can lead to inconsistencies in PSD, affecting the quality of the final product.
Mill Performance and Wear: Grinding equipment is subject to continuous wear and tear due to the abrasive nature of clinker and additives. The efficiency of grinding media, liner design,
and mill internals plays a significant role in optimising mill performance and reducing maintenance costs.
Heat Generation and Agglomeration: During grinding, friction generates heat, which can lead to issues such as agglomeration and coating on grinding media. This reduces the efficiency of the grinding process, requiring additional efforts to control mill temperature and ensure proper dispersion of cement particles.
Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer says, “One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.”
“Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run” he adds.
Role of Grinding Aids in Cement Grinding
Grinding aids are chemical additives that are introduced into the grinding process to improve efficiency and performance. These additives work by reducing the surface energy of clinker particles, preventing agglomeration, and enhancing the flowability of the cement powder. Some of the key benefits of grinding aids include:
Enhanced Grinding Efficiency: Grinding aids help in breaking down clinker particles more effectively, reducing the energy required for grinding. This leads to higher mill output, lower specific energy consumption, and improved overall plant performance.
Improved Particle Size Distribution: By minimising agglomeration and promoting dispersion, grinding aids contribute to a more uniform particle size distribution. This results in better cement hydration, improved strength development, and enhanced durability of concrete structures.
Reduction in Coating and Mill Wear: Grinding aids help prevent the accumulation of cement particles on grinding media and mill internals, reducing coating issues. This minimises wear and tear on equipment, leading to lower maintenance costs and extended mill life.
Better Flowability and Handling: Cement produced with grinding aids exhibits improved flow properties, reducing the risk of blockages in silos and conveying systems. This facilitates smoother handling, packaging, and transportation of cement.
“The performance evaluation of grinding aids is crucial in determining their efficiency and overall contribution to cement manufacturing processes. A systematic assessment involves analysing key performance indicators (KPIs) such as energy consumption, mill output, and particle size distribution, while also evaluating their impact on cement hydration, setting time, and compressive strength. These evaluations, carried out both in laboratories and real-world industrial settings, provide critical insights into the effectiveness of grinding aids” says Dr SB Hegde.
Types of Grinding Aids
Grinding aids can be classified into different categories based on their chemical composition
and functionality. The most commonly used grinding aids include:
Amine-Based Grinding Aids: These additives, such as triethanolamine (TEA) and diethanolamine (DEA), enhance the grinding process by reducing surface tension and improving dispersion. They are widely used to improve early strength development and reduce setting time.
Glycol-Based Grinding Aids: Polyethylene glycols (PEG) and ethylene glycols are commonly used to improve mill efficiency and reduce energy consumption. They help in reducing agglomeration and enhancing cement flowability.
Organic Acids and Their Salts: Organic acid-based grinding aids, such as acetic acid and citric acid derivatives, function by modifying surface interactions between clinker particles. They contribute to better particle dispersion and enhanced cement performance.
Advanced Process Control and AI in Grinding Optimisation
The integration of Advanced Process Control (APC) and Artificial Intelligence (AI) in cement grinding has revolutionised the industry by enhancing efficiency, reducing energy consumption, and improving product quality. APC systems use real-time data from sensors to automatically adjust operating parameters, such as mill speed, grinding media distribution, and material flow, ensuring optimal performance. AI-driven predictive analytics further refine this process by identifying patterns and trends, allowing for proactive adjustments that minimise downtime and maximise throughput.
Rajeev Manchanda, Director, Christian Pfieffer says, “Technology plays a vital role in both our operations and those of the cement industry. We have established several collaborations with leading European companies to provide cutting-edge technology and services. These partnerships allow us to offer energy-efficient and environmentally friendly solutions to our clients. For example, we work closely with Semprotect to optimise the calorific value of clinkerisation plants, which significantly reduces coal consumption. By saving coal, we not only cut costs but also contribute to environmental preservation.”
“All our equipment is designed with the primary objectives of saving energy, minimising coal usage, and increasing production efficiency. Our approach involves replacing outdated systems with modern, optimised ones, which have consistently delivered substantial benefits to our clients. These improvements are aligned with our commitment to reducing the industry’s carbon footprint while enhancing operational efficiency” he adds.
One of the key benefits of AI in grinding optimisation is its ability to handle complex variables that affect grinding efficiency, such as raw material variability, feed rate fluctuations, and mill conditions. Machine learning algorithms continuously analyse historical and real-time data to make intelligent decisions, reducing human intervention and improving accuracy. This results in lower specific energy consumption, better particle size distribution, and increased cement strength.
The Future of Grinding Aids and Sustainable Cement Production
With increasing emphasis on sustainability and reducing the environmental impact of cement production, the development of eco-friendly grinding aids is gaining attention. Researchers are exploring bio-based and waste-derived additives that can improve grinding efficiency while minimising the carbon footprint of cement manufacturing. Additionally, advancements in digitalisation and AI-driven process control
systems are expected to further optimise grinding operations, leading to smarter and more sustainable cement production.
Conclusion
The grinding process plays a crucial role in cement manufacturing, influencing energy consumption, production efficiency, and final product quality. While challenges such as energy demand, particle size distribution, and mill performance persist, the use of grinding aids has proven to be an effective strategy in overcoming these obstacles. By enhancing grinding efficiency, improving cement properties, and reducing operational costs, grinding aids contribute significantly to the sustainability and competitiveness of the cement industry. As technology advances, further innovations in grinding aids and process optimisation will continue to shape the future of cement grinding, ensuring a more sustainable and efficient production process.
You may like
Concrete
Refractory demands in our kiln have changed
Published
3 days agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
3 days agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Cement Additives for Improved Grinding Efficiency
Published
3 days agoon
February 20, 2026By
admin
Shreesh A Khadilkar discusses how advanced additive formulations allow customised, high-performance and niche cements—offering benefits while supporting blended cements and long-term cost and carbon reduction.
Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc.
The cement additives are materials which could be further differentiated as:
Grinding aids:
• Bottlenecks in cement grinding capacity, such materials can enhance throughputs
• Low specific electrical energy consumption during cement grinding
• Reduce “Pack set” problem and improve powder flowability
Quality improvers:
• Opportunity for further clinker factor reduction
• Solution for delayed cement setting or strength development issues at early or later ages.
Others: materials which are used for specific special cements with niche properties as discussed in the subsequent pages.
When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, typically composed of:
- Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
- Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of cements (PPC/PSC /PCC).
- Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.
Mechanism of action — Step By Step—
- Reduce Agglomeration, Cement particles get electrostatically charged during grinding, stick together, form “flocs”, block mill efficiency, waste energy. Grinding aid molecules adsorb onto particle surfaces, neutralise charge, prevent re-agglomeration.
- Improve Powder Flowability, Adsorbed molecules create a lubricating layer, particles slide past each other easier, better mill throughput, less “dead zone” buildup.
Also reduces caking on mill liners, diaphragms, and separator screens, less downtime for cleaning. - Enhance Grinding Efficiency (Finer Product Faster), By preventing agglomeration, particles stay dispersed more surface area exposed to grinding media, finer grind achieved with same energy input, Or: same fineness achieved with less energy, huge savings.
Example:
• Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
• With use of optimum grinding aid same fineness at 32 kWh/ton 20 per cent energy savings - Reduce Pack Set and Silo Caking Grinding aids (GA) inhibit hydration of free lime (CaO) during storage prevents premature hardening or “pack set” in silos. especially critical in humid climates or with high free lime clinker.
It may be stated here that Overdosing of GA can cause: – Foaming in mill (especially with glycols) reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is Start with 0.02 per cent to 0.05 per cent dosage test fineness, flow, and set time adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids
Cement additives for niche properties of the cement in concrete.
The cement additives can also be tailor made to create specific niche properties in cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:
• Additives for improved concrete performance of cements, high early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
• Water repellence / water proofing, permeability resistance in mortars and concrete.
• Biocidal cement
• Photo catalytic cements
• Cements with negligible ASR reactions etc.
Additives for cements for improved concrete performance
High early strengths: Use of accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 day strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + improved workability, durability and sustainability.
Another interesting aspect could also be of using ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.
About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete4 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


