Connect with us

Concrete

Cement manufacturers should adopt a holistic approach

Published

on

Shares

Nathan Ashcroft, Director – Low Carbon Solutions, Stantec, discusses overcoming barriers and unlocking Net Zero potential of CCUS with Kanika Mathur.

ICR has consistently reviewed the role of carbon capture in the Indian cement industry’s efforts at decarbonisation. In an exclusive interaction, we get Nathran Ashcroft, Director – Low Carbon Solutions, Stantec, to take us through the challenges and opportunities of integrating Carbon Capture, Utilisation, and Storage (CCUS) into cement manufacturing. He highlights technological advancements, regulatory considerations and financial strategies, emphasising global collaboration as the key to achieving large-scale decarbonisation.

What are the key challenges in integrating CCUS into the existing cement manufacturing facilities?
The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter.

How do you think carbon capture technologies can align with the net zero goals of cement manufacturers today?
Carbon capture technologies can play a pivotal role in helping cement manufacturers achieve their net zero targets. Cement manufacturing has a unique decarbonisation pathway compared to other industries. For instance, when we apply carbon capture to oil and gas facilities, we can capture greenhouse gases, but the fuel produced still results in emissions downstream when burned. In contrast, carbon capture in the cement industry directly reduces the carbon intensity of the cement itself. Cement, when used in concrete, serves as a carbon sink, further contributing to reducing overall emissions.
Installing a highly efficient carbon capture system at a cement facility enables manufacturers to produce lower-carbon products. This makes carbon capture integral to the industry’s decarbonisation efforts. While implementing these systems is complex and resource-intensive, it is a major step toward achieving net zero. Once this is accomplished, manufacturers are significantly closer to their environmental goals. Refinements can then be made to optimise processes further, but carbon capture represents the most substantial leap in the journey toward net zero for the cement industry.

What role does waste heat recovery play in improving the cost efficiency of CCS in cement plants?
Waste heat recovery plays a crucial role in enhancing the cost efficiency of carbon capture systems in cement plants. Cement production involves high-temperature processes, which present opportunities to utilise waste heat. This heat can be recovered and converted into power, which offsets some of the operational and capital costs associated with carbon capture systems.
Additionally, when treating flue gas streams for CO2 removal, it is necessary to clean the gas by removing particles and other impurities. This results in ancillary benefits beyond just reducing greenhouse gas emissions—it also leads to a cleaner flue gas stream, addressing both visible and invisible pollutants. Waste heat recovery helps balance the energy requirements of the carbon capture process by leveraging energy that has already been generated, making the entire system more efficient. However, the implementation of waste heat recovery solutions can vary from site to site, as each facility has unique characteristics and constraints. Despite the challenges, waste heat recovery remains an integral part of efficient system integration in the cement industry.

What are the most promising opportunities for utilising captured CO2 within the cement industry?
The utilisation of captured CO2 in the cement industry holds potential, but the options remain somewhat limited today. In an ideal scenario, captured CO2 could be used for higher-value applications, but large-scale cement facilities produce immense quantities of CO2, often in the range of hundreds of thousands to millions of tons annually.

Finding applications that can absorb such volumes is challenging.
One of the more established uses of captured CO2 is in enhanced oil recovery (EOR). In regions where adjacent energy producers exist, such as Western Canada and California, CO2 can be used as a solvent for injection into oil reservoirs, helping extract more oil from the ground. However, this option depends heavily on the geographical location of the cement facility and the proximity of industries that can use the CO2.
Another potential avenue lies in industrial hubs where multiple industries are located close to one another. Collaborating with adjacent industries that require CO2—such as urea production or emerging technologies—could present viable utilisation options. That said, the economic and logistical aspects of CO2 utilisation must be carefully evaluated, as these factors significantly influence the feasibility of such projects. While utilisation options are currently limited, ongoing research and development may unlock new opportunities in the future.

What strategic considerations should cement manufacturers prioritize when planning large-scale CCUS projects?
Cement manufacturers should adopt a holistic approach when planning large-scale CCUS projects, focusing on the entire lifecycle of CO2 capture and utilisation. Installing a carbon capture system is only one piece of the puzzle. Manufacturers must also consider how the captured CO2 will be transported, stored or utilised. This includes evaluating sequestration options, potential uses for the CO2, and partnerships with adjacent industries.
Phased implementation can also be a practical strategy. Many cement plants have multiple kilns or calciners producing flue gas streams. Manufacturers may choose to implement carbon capture systems incrementally, targeting specific streams or units initially before scaling up. Collaboration with nearby facilities or industrial hubs could help share the cost of infrastructure, such as pipelines or compression systems.
Lastly, early-stage assessments and strategic planning are critical to identifying the most efficient and cost-effective pathways. Given the complexity of CCUS projects, it is rare for a single entity to manage all aspects of the system—from capture to sequestration. Engaging experts and leveraging partnerships can help cement manufacturers navigate the challenges and opportunities more effectively.

How can the cement sector overcome regulatory and financial challenges in adopting this technology?
Overcoming regulatory and financial challenges is essential for the successful adoption of carbon capture technology in the cement sector. From a regulatory perspective, manufacturers can benefit from the experiences of jurisdictions that have already implemented CCUS projects. For example, Western Canada, the US Gulf Coast and Norway have established regulatory frameworks for handling CO2, including its compression, transportation, and storage. Leveraging the knowledge and procedures developed in these regions can save time and resources, avoiding the need to start from scratch.
Financially, carbon capture systems are undeniably expensive, both in terms of capital (CAPEX) and operational (OPEX) costs. Securing government incentives, grants, or tax credits is often vital for making these projects financially viable. In North America, for instance, production tax credits and grants have been instrumental in offsetting costs. Manufacturers should explore similar opportunities in their respective regions.
Additionally, there is growing interest in linking the carbon intensity of products, such as cement, to their market value. Products with lower carbon intensity could command higher prices in international markets, providing a financial incentive for adopting CCUS technologies. However, most successful projects to date have relied on some level of government support. Understanding the financial landscape and leveraging available resources will be crucial for widespread adoption.

How do you see the role of global collaborations in scaling CCUS in sectors like cement?
Global collaborations are vital for scaling CCUS technologies in the cement industry. The CCUS sector is unique in its willingness to collaborate and share knowledge. Many stakeholders understand the scale of the challenge and recognise that working together is more efficient than starting independently from scratch. For example, European governments have visited Western Canada to learn from its CCS Global Symposium and to engage with local experts. Such collaborations allow regions just starting their CCUS journey to benefit from the experiences and lessons of others.
Organizations like the Carbon Capture Knowledge Centre in Saskatchewan offer training programs and workshops, providing valuable opportunities for international delegations to learn from established projects. Cement manufacturers and industry bodies could invite experts to participate in conferences and workshops, fostering knowledge exchange and collaboration.
By engaging with jurisdictions and organisations that have already implemented CCUS projects, the cement sector can accelerate its own progress. Collaboration across borders, industries, and research institutions will play a critical role in advancing the adoption of CCUS technologies on a global scale.

Can you elaborate on the key technologies for CO2 capture in the cement industry and their potential advancements?
There are two primary branches of technology for CO2 capture in the cement industry: amine-based systems and cryogenic solutions. Amine systems are the standard and widely used globally. These systems rely on a solvent—an ammonia-based solution—to capture CO2, which is then released from the solvent during processing. While effective and established, amine systems come with certain challenges, including regulatory considerations and the introduction of chemicals into cement facilities.
Cryogenic solutions, on the other hand, represent an emerging and more elegant alternative. These systems involve cooling the flue gas stream to extremely low temperatures (around -50°C), causing the CO2 to liquefy for capture. Unlike amine systems, cryogenic solutions do not require solvents, making them cleaner and potentially more suitable for cement facilities. Additionally, cryogenic systems align well with the use of renewable electricity, offering a pathway for integration into green grids.
Both technologies have their advantages, but the cryogenic approach is particularly promising for the cement industry due to its simplicity and adaptability. As advancements continue, we are likely to see significant cost reductions and efficiency improvements in both technologies. This innovation will be essential for making CCUS more accessible and economically viable for the cement sector.

Concrete

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations

Published

on

By

Shares

Start-ups worldwide are invited to contribute to the global cement and concrete industry’s efforts to reduce CO2 emissions and combat climate change. The Global Cement and Concrete Association (GCCA) and its members are calling for applicants for the Innovandi Open Challenge 2025.

Now in its fourth year, the Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations that help decarbonise the cement and concrete industry.

The challenge is seeking start-ups working on next-generation materials for net-zero concrete, such as low-carbon admixtures, supplementary cementitious materials (SCMs), activators, or binders. Innovations in these areas could help reduce the carbon-intensive element of cement, clinker, and integrate cutting-edge materials to lower CO2 emissions.

Thomas Guillot, GCCA’s Chief Executive, stated, “Advanced production methods are already decarbonising cement and concrete worldwide. Through the Innovandi Open Challenge, we aim to accelerate our industry’s progress towards net-zero concrete.”

Concrete is the second most widely used material on Earth, and its decarbonisation is critical to achieving net-zero emissions across the global construction sector.

Continue Reading

Concrete

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands.

Published

on

By

Shares

StarBigBloc Building Material, a wholly-owned subsidiary of BigBloc Construction, one of the largest manufacturers of Aerated Autoclaved Concrete (AAC) Blocks, Bricks and ALC Panels in India has acquired land for setting up a green field facility for AAC Blocks in Indore, Madhya Pradesh. Company has purchased approx. 57,500 sq. mts. land at Khasra No. 382, 387, 389/2, Gram Nimrani, Tehsil Kasrawad, District – Khargone, Madhya Pradesh for the purpose of AAC Blocks business expansion in central India. The total consideration for the land deal is Rs 60 million and Stamp duty.

StarBigBloc Building Material Ltd currently operates one plant at Kheda near Ahmedabad with an installed capacity of 250,000 cubic meters per annum, serving most part of Gujarat, upto Udaipur in Rajasthan, and till Indore in Madhya Pradesh. The capacity utilisation at Starbigbloc Building Material Ltd for the third quarter was 75 per cent. The planned expansion will enable the company to establish a stronger presence in Madhya Pradesh and surrounding regions. Reaffirming its commitment to the Green Initiative, it has also installed a 800 KW solar rooftop power project — a significant step toward sustainability and lowering its carbon footprint.

Narayan Saboo, Chairman, Bigbloc Construction said “The AAC block industry is set to play a pivotal role in India’s construction sector, and our company is ready for a significant leap forward. The proposed expansion in Indore, Madhya Pradesh aligns with our growth strategy, focusing on geographic expansion, R&D investments, product diversification, and strategic branding and marketing initiatives to enhance visibility, increase market share, and strengthen stakeholder trust.”

Bigbloc Construction has recently expanded into construction chemicals with Block Jointing Mortar, Ready Mix Plaster, and Tile Adhesives, tapping into high-demand segments. The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands, ensuring superior bonding, strength, and performance.

In May 2024, the board of directors approved fund-raising through SME IPO or Preferential issue to support expansion plans of Starbigboc Building Material subject to requisite approvals and market conditions, Starbigboc Building Material aims to expand its production capacity from current 250,000 cubic meters per annum to over 1.2 million cubic meters per annum in the next 4-5 years. Company is targeting revenues of Rs 4.28 billion by FY27-28, with an expected EBITDA of Rs 1.25 billion and net profit of Rs 800 million. In FY23-24, the company reported revenues of Rs 940.18 million, achieving a revenue CAGR of over 21 per cent in the last four years.

Incorporated in 2015, BigBloc Construction is one of the largest and only listed AAC block manufacturer in India, with a 1.3 million cbm annual capacity across plants in Gujarat (Kheda, Umargaon, Kapadvanj) and Maharashtra (Wada). The company, which markets its products under the ‘NXTBLOC’ brand, is one of the few in the AAC industry to generate carbon credits. With over 2,000 completed projects and 1,500+ in the pipeline, The company’s clients include Lodha, Adani Realty, IndiaBulls Real Estate, DB Realty, Prestige, Piramal, Oberoi Realty, Tata Projects, Shirke Group, Shapoorji Pallonji Group, Raheja, PSP Projects, L&T, Sunteck, Dosti Group, Purvankara Ltd, DY Patil, Taj Hotels, Godrej Properties, Torrent Pharma, GAIL among others.

Continue Reading

Concrete

World Cement Association Calls for Industry Action

The cement industry is responsible for 8 per cent of global CO2 emissions

Published

on

By

Shares

The cement industry is responsible for 8 per cent of global CO2 emissions—a staggering figure that demands urgent action, particularly as 2024 marked the first year the planet surpassed the 1.5°C global warming limit. Recognising this critical juncture, the World Cement Association (WCA) has released a landmark White Paper, “Long-Term Forecast for Cement and Clinker Demand”, which projects a sharp decline in long-term cement and clinker demand. By 2050, annual clinker production is expected to fall below 1 Gt from its current level of 2.4 Gt, with far-reaching implications for global carbon emissions and the viability of carbon capture projects.

WCA CEO Ian Riley underscores the complexity of this challenge:
“Carbon capture remains a vital tool for tackling emissions in hard-to-abate sectors like cement. However, flawed demand assumptions and the fragmented nature of cement production globally could undermine the feasibility of such projects. Industry stakeholders must rethink their strategies and embrace innovative, sustainable practices to achieve meaningful emissions reductions.”

Key Findings from the WCA White Paper
The WCA White Paper provides a comprehensive roadmap for the industry’s decarbonisation journey, highlighting the following critical insights:
1. Declining Cement and Clinker Demand: Global cement demand is expected to drop to approximately 3 billion tonnes annually by 2050, while clinker demand could decline even more steeply, reaching just 1.5 billion tonnes annually.
2. Implications for Carbon Capture and Storage (CCS): With reduced clinker production, the need for CCS is expected to decline, necessitating a shift in investment and policy priorities.
3. Alternative Materials and Clinker-Free Technologies: These innovations hold transformative potential for reshaping demand patterns and cutting emissions.
4. Supply Chain Optimisation: Enhancing logistics and reducing waste are key strategies for adapting to evolving market dynamics.

A Path to Lower Emissions
Clinker production, the largest source of CO2 emissions in cement manufacturing, generates one-third of emissions from fuel combustion and two-thirds from limestone decomposition. According to our white paper, transitioning to lower-carbon fuels could reduce specific fuel emissions per tonne of clinker by nearly 70% by 2050. Overall CO2 emissions from cement production are forecast to decline from 2.4 Gt in 2024 to less than 1 Gt by 2050, even before factoring in carbon capture technologies.

Ian Riley emphasised: “This white paper provides actionable insights to help the cement industry accelerate its decarbonisation journey. By prioritising innovation and collaboration, the industry can achieve substantial emissions reductions and align with global climate goals.”

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds