Connect with us

Concrete

Technology is the cornerstone of clinker cooling

Published

on

Shares

Madhusudan Rasiraju, Country Head, IKN India, talks about enhancing cement plant efficiency with energy-saving, reliable, and customised solutions while supporting sustainability through innovations like oxy-fuel plants and AFR adaptability.

Could you explain what IKN Engineering is, what the company specialises in, and share insights about your clinker cooling solutions?
IKN is a Germany-based company that specialises in providing advanced clinker cooling solutions to the cement industry. Our expertise lies in developing and supplying innovative cooling systems that focus on energy efficiency, durability and cost-effectiveness.
The clinker cooling process is a critical stage in cement production, as it significantly influences the energy efficiency of the entire plant. Our coolers are designed with cutting-edge technology to recuperate a substantial amount of heat from the clinker. This recovered heat is redirected back into the cement production process, enabling our customers to reduce their fuel consumption significantly. Moreover, IKN coolers are engineered for reliability. They are built to operate with minimal maintenance, which helps to lower operational costs and reduce downtime. By focusing on high performance and long-term reliability, we ensure that our solutions are both economically and environmentally beneficial.

How does IKN contribute to improving the efficiency of cement plant operations and supporting sustainability goals?
IKN plays a pivotal role in enhancing the operational efficiency of cement plants while aligning with global sustainability objectives. Historically, clinker coolers required frequent maintenance, with intervals as short as five to six months. This led to regular shutdowns, which disrupted operations and increased costs. With IKN’s advanced cooling solutions, cement plants can now operate their coolers for extended periods without significant maintenance. Our coolers are not only more reliable but also consume less power, which directly reduces energy costs. Additionally, the high heat recuperation efficiency of our systems ensures that less fuel is required for the cement-making process, contributing to a lower carbon footprint.
Sustainability is embedded in our solutions. By reducing energy consumption, optimising processes, and minimising maintenance, we help our customers achieve their operational goals while supporting their commitment to environmental stewardship.

What role does technology play in the clinker cooling process, and how does IKN leverage it to provide advanced solutions?
Technology is the cornerstone of clinker cooling and a driving force behind our innovative solutions at IKN. The cement industry’s needs are constantly evolving, and to stay ahead, we ensure our technologies remain dynamic and adaptable. We adopt a customer-centric approach, continuously collecting feedback from our clients to improve our systems. Every clinker cooler we supply is tailored to meet the specific requirements of the plant it serves. For instance, the physical layout, production capacity, and operational challenges of each facility are unique, and we ensure our solutions address these specific needs.
Moreover, our ongoing research and development efforts focus on enhancing reliability, improving heat recovery, and lowering energy consumption. By integrating the latest technological advancements, we make sure our coolers set new benchmarks in performance and sustainability.

Do you offer customised solutions for each cement plant, and how does the increasing use of alternative fuels (AFR) impact your clinker cooling solutions?
Absolutely, customisation is at the core of what we do at IKN. In the case of retrofits, every cooler is custom-designed to fit the specific layout and operational needs of the existing cement plant. For new installations, we collaborate closely with our clients to design coolers that are precisely sized and configured to meet their requirements.
Regarding alternative fuels (AFR), their increasing use in cement plants presents unique challenges. AFR often results in the production of finer clinker, which can be more difficult to handle during the cooling process. To address this, we optimise the operating parameters of our coolers, such as airflow density and cooler speed, to ensure they perform effectively with the type of clinker being produced. This adaptability ensures that our coolers remain efficient and reliable, even in plants using diverse and non-traditional fuels.

What challenges do you face in providing clinker cooling solutions, both from your operations and from the cement industry’s perspective?
Challenges are inevitable in any advanced technological field, and clinker cooling is no exception. One of the primary challenges we face is adapting to the changing demands of our customers. For example, frequent shifts in fuel types or the introduction of AFR can disrupt the cooling process. These changes often result in variations in clinker properties, requiring us to make adjustments to maintain optimal performance. Additionally, the grid surfaces in coolers may face increased wear and tear due to these changes. At IKN, we address such challenges by reinforcing the grid surfaces and fine-tuning our systems to handle these dynamic conditions.
From an industry perspective, there is an increasing emphasis on efficiency, sustainability, and cost reduction. Meeting these expectations while maintaining high performance is challenging, but it is a challenge we embrace through innovation, research, and collaboration with our clients.

What are your views on the net zero mission, and how is IKN contributing toward this goal?
The net zero mission is a vital initiative for energy-intensive industries such as cement, steel, and power. It requires a collective effort across the supply chain to achieve meaningful progress.
At IKN, we are committed to supporting this global goal. One of our key contributions is the development of oxy-fuel plants, which are designed to significantly reduce carbon emissions during production. We are also exploring innovative cooling methods, such as the use of nitrogen or other media, to further enhance sustainability. Currently, we have two oxy-fuel projects underway in Germany. These plants not only demonstrate our commitment to the net zero mission but also serve as examples of how advanced technology can drive sustainability in the cement industry. By focusing on durability, efficiency, and innovation, we help our clients reduce their environmental footprint while maintaining high operational standards.

– Kanika Mathur

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds