Connect with us

Concrete

Maximising AFR in Cement Manufacturing

Published

on

Shares

Shreesh A Khadilkar, Consultant and Advisor, and Former Director Quality and Product Development, ACC Ltd Thane, discusses the importance of optimising the use of alternative fuel and raw materials (TSR percentage) in cement production without affecting clinker quality, in part one of this two-part series.

Over the past decade or so, the Indian cement industry has made significant progress in terms of improvement in energy efficiency and productivity. However, the use of alternative fuel and raw material (AFR) to replace coal for thermal energy needs, remains an area where the Indian cement industry is yet to catch up with global benchmarks. Though a few cement plants co-process large quantities and varieties of AFR in their kilns, and are reported to reach a level of around 40 per cent Thermal Substitution Rate (TSR), many plants are still at much lower levels of TSR percentage.
Most of the cement plants have now installed co-processing facilities or are on the verge of having one. Some of the plants also have pre-processing facilities, which could include shredding, segregation, impregnation, foreign body removal etc., while some others source a pre-processed solid AFR (RDF, MSW, Industrial waste sludges, agro wastes etc.).
This article shares important aspects such as assessment of clinker quality in plant clinker quality optimisation, influence of alkalis, chlorides and SO3, effects of some important minor constituents and subsequently discusses the concept for maximising AFR (TSR percentage) without affecting clinker quality through with or without use of XRD technique for in process control. The author further recommends bi-hourly quality and in process dashboard for consistent kiln performance and consistent clinker quality.

Assessment of Clinker Quality
The clinker quality assessment can best be done by Lab Ball Mill grinding of day average clinker with mineral gypsum (with SO3 of the lab ground cement targeted at 2.2 to 2.4 with fixed grinding time to achieve Blaine’s of around 300-320 M2/kg with the residue on 45 microns of the cement in range of 18 per cent to 20 per cent, at this fineness, the clinker is observed to clearly depict changes in clinker reactivity in terms of changes in 1 Day strengths of cements (± 3 to 5 MPa). At lower grinding Blaine’s (of around 250 M2/kg), which is presently being practiced by many cement plants, one does not observe the changes in clinker reactivity, as the difference of 1 Day compressive strengths is only ± 1 MPa, which does not show the changes in clinker reactivity.
Typically, clinkers with good reactivity are observed to show 1 Day strengths in lab ground cements of 30 to 35 MPa. Higher values being observed when clinker alkali sulphates are high (especially with Petcoke as fuel), the achieved Blaine’s and quantity of nibs removed from the lab ground cement, in the fixed grinding time is also indicative of clinker grindability. Judicious raw mix optimisation with existing or alternative corrective materials (with the fuel mix used by the plant) can be attempted so as to have a clinker with improved reactivity/hydraulic potential. In a running plant the approach has to be by attempting small gradual changes to clinker composition and assessing the impact of the changes, on kiln performance and clinker quantity.
The changes to be attempted could be indicated through data analysis.
In each plant, the QC and process has detailed analysis data of the day average clinkers along with its lab ground cement test results. It is also suggested to test at least one spot clinker per day for chemical parameters and physical tests of lab ground cement. From the analysis data it could be observed that on some days the lab ground cements show much higher strengths. Why on some days or in some spot clinkers, the clinker reactivity is suddenly very good? Such clinkers should be preserved and evaluated by XRD, so as to identify the optimum clinker composition which shows higher reactivity. Such an evaluation could also indicate at times the impact of changes in fuel / sources of coal / proportions of coal and Petcoke (even source of Petcoke) / solid AFR usage levels.
Typically, the target clinker composition to give a good hydraulic potential would be with LSF of 93 to 95 with a bogues potential C3S of >55 per cent clinker (especially with Petcoke as main fuel in fuel mix), with C3A (6.5 per cent to 8.5 per cent) if the clinker is used for PPC/PSC and also for OPC (especially if OPC is supplied to RMX customers) and SM 2.2 to 2.4 A/F 1.2 to 1.4. In plants where clinker MgO is higher (> 4.5 per cent), besides having the LSF target of around 93 to 95, the minimum clinker lime targeted should be such to have C/S ratio of 2.95 to 3.1 for having good clinker reactivity in spite of high clinker MgO.

Co-Processing of AFR (Liquid AFR /Solid AFR)
The properties of AF(R) co-processed in the calciner have an impact on environment, health and safety, plant operations and product quality as shown in Table 1:

  • Alkalis without sulphidisation: Formation of orthorhombic C3A, fast setting
  • Alkali sulphates (Na2SO4, K2SO4, 2CaSO4.K2SO4 or even Ca-langebnite): Increased early strength, usually shows decrease of later age strengths. Changes must be accounted for in gypsum optimisation
  • Excess of sulphur over alkalis
  • Integration of SO3 in C2S and/or formation of CaSO4
  • Possible reduction of final strength could be observed
  • Reduces the CaO availability for C3S formation
  • The clinker could be harder to grand
  • Changes the Clinker Liquid Characteristics which affects the phase formations
  • Chlorides tend to be higher in AFR liquid/solid, the control on chlorides is necessary to prevent inlet/cyclone jamming and to have < 0.06 per cent in clinker, so that the OPC has <0.04 per cent chlorides and is suitable for
  • RMC/structural concrete. To avoid problems of kiln inlet and cyclone jamming caused by SO3 and Cl. Preferably maintain the Hot Meal (2 Cl + SO3) < 3.5. The threshold value for a given plant needs to
    be assessed.

If the value goes above the plant threshold value, immediate actions of adding caustic soda for 2 to 3 shifts (in small polyethene bags) should be done to remove the depositions and avoid kiln stoppage.

Effects of some minor constituents on the clinker quality

Effects of ZnO

  • Zinc in clinker nearly distributes evenly between the silicates ad matrix phases (with preference to ferrite), trigonal C3S and ß C2S is stabilised by zinc.
  • Presence of zinc reduces the amount of aluminates in favour of alumino ferrite.
  • Each 1 per cent zinc reduces aluminates by
    1 per cent and increases alumino-ferrites by
    2 per cent.
  • Zinc is very effective flux and mineraliser, it lowers clinkerisation temperatures and accelerates lime combination. Knofel reports increased comp. strengths by up to 20 per cent and above at early ages.

Effects of TiO2

  • The clinker TiO2 should be <0.7 per cent, it should be noted that TiO2 is a viscous flux like Al2O3 and so for understanding the clinker liquid property for good C3S formation and based on the kiln conditions adjust the clinker Fe2O3 contents accordingly.
  • At higher TiO2, contents for improved kiln conditions the clinker Fe2O3 content needs to be much higher which is aggravated if clinker SO3 is higher (which also affects the viscosity of clinker liquid)
  • At high total liquid the clinker becomes silica deficient and so free lime tends to be higher (with clinker balls with calcined un sintered material inside)
  • In plants that use red mud especially with petcoke due to its higher alkalis, many sources of red muds also have TiO2, the plant should target Al2O3 + TiO2 as the viscous flux and then adjust the clinker Fe2O3 to get good kiln conditions as indicated above. Targeting higher liquid only increases the limestone LSF from mines and also affects clinker grindability.

Effects P2O5 sources

  • Many types of agriculture waste, biowastes, phosphate sludge, paint sludges, medical waste, RDF/municipal solid waste, expired detergent, cow dung cakes, etc.
  • Under Indian conditions of clinker phase composition, any increase of P2O5 contents can substantially affect clinker quality.
  • When higher P2O5 are present, the dicalcium silicate (C2S) is stabilised and inhibits formation of alite (C3S) i.e can decrease the percentage of C3S although bogue may show high percentage C3S.
  • When P2O5 present exceeds 0.4 per cent in the clinker it reduces the percentage of C3S by 10 per cent and 1 Day Comp. Strengths by around 5-6 MPa with negative effects on clinker reactivity and setting of cement.
  • Use of wastes containing phosphates in controlled manner so that P2O5 in the clinker (maximum limit in clinker is 0.25 per cent) can enhance the use of agricultural waste or use of other wastes with P2O5. It may be noted that in some regions limestone and laterite also have shown P2O5 contents.
  • In some plants up to 5 to 7 per cent TSR there is no impact observed on quality or productivity, however as the TSR/AFR percentage is increased say above >8 per cent to 10 per cent, the kiln conditions get frequently disturbed with a very high dust generation and there is a drop in clinker reactivity/quality.

In the plants a judicious study of process conditions and understanding the burnability of kiln feed could help achieve productivity without affecting the clinker quality with increased AFR/TSR.

In one of my consultancy visits to an integrated plant, similar observations as above were reported. In a brainstorming discussions with the plant process, production and QC teams, it was noted that:

  • There was substantial variation in calciner outlet/kiln inlet material/C6 material temperature it fluctuated from around 920oC to as low as 860oC, these changes in temperatures nearly corresponded with the fluctuation in percentage of moisture and feed rate of solid AFR (SAFR), RDF and other solid wastes.
  • The kiln torque decreased below the desired levels, when the calciner outlet and kiln inlet material temperatures (in this case C6 material temperatures) were less than 890oC and the kiln performance showed high dust recirculation/generation.
  • The bi-hourly XRF analysis of clinker showed lower LSF/high free lime. The decrease in clinker LSF was understandable as the SAFR ash showed a higher percentage of ash.

It was decided to collect hot meal samples 900oC to 910oC and 920oC to 930oC and also corresponding clinker samples collected after 40 minutes of the sample collection time of hot meal samples. The hot meal samples were analysed for XRD and clinker samples for XRF (Chemical analysis with free lime) and XRD (for clinker phase formation).
The XRD analysis of hot meal samples is shown in Table 2.
The XRD analysis indicates that:

  • The calcination percentage is much higher than the convention DOC of hot meal samples.
  • The un-combined CaO decreases with increase in temperature of collected sample.
  • The total belite increases with increase in temperature.

It was observed in the plant that when attempts were made to maintain the kiln inlet material temperature at 910oC to 920oC, the kiln torque showed an improvement and the kiln performance improved. The clinker quality showed improvements with lower free lime. However due to the fluctuations in ash percentage content of SAFR the clinker LSF showed lower values during the day. As a corrective action, lime sludge (available at the plant) was added on the SAFR conveyor. These corrective actions helped achieve a consistent improved clinker quality.

About the author:
With an MSc in Organic Chemistry from Jodhpur University (now JNV University), Shreesh Khadilkar joined ACC’s Organic Chemical Product Development Division in 1981 and later transitioned to the Cement R&D Division as a technical assistant. He took over as VP of R&D (Quality and Product Development Division) and retired as Director of the department in 2018, with over 37 years of experience in cement manufacturing and cements/cementitious products.

Concrete

Driving Sustainability Through Innovation

Published

on

By

Shares

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.

The cement industry in India, the second-largest in the world, is on the cusp of remarkable growth as it continues its transition toward sustainability, innovation, and expansion. The 15th Cement Expo 2025, scheduled for November 12-13, 2025, at the Yashobhoomi Convention Centre in Delhi, will be the premier event where the industry’s foremost stakeholders converge to explore state-of-the-art technologies and solutions.
Co-located with the 11th Indian Cement Review Conference and the 9th Indian Cement Review Awards, the expo promises to be a pivotal event for professionals in the cement, construction, and infrastructure sectors. This year’s theme, “Driving Sustainability Through Technology,” highlights the sector’s commitment to decarbonisation, efficiency, and technological advancement. With India poised to add 80 to 100 million tonnes of cement capacity by 2024-25, the event will address the urgent need for sustainable, low-carbon solutions to meet the growing demand.
Before we look ahead to the 15th Cement Expo, let’s reflect on the remarkable success of the Cement Expo Forum 2025, held on March 5-6, 2025, in Hyderabad. The event attracted over 500 industry professionals and featured groundbreaking discussions on sustainability, logistics, and decarbonisation. Key sponsors and partners, such as ABB, Gebr Pfeiffer, JK Cement, and Flender Drives, showcased their latest innovations, contributing to the forum’s success.
Pratap Padode, Founder and President of First Construction Council, spoke at the event, noting, “The PPP pipeline is complemented by a provision of Rs 1.5 trillion in interest-free loans to states, earmarked for capital expenditure. With this, we have a solid plan in place. What needs to be done is to ensure that the PPP actually takes off as envisaged. To make this happen, trust must be established, and policies must be investor-friendly. Telangana, in this regard, has demonstrated ease of doing business exceptionally well.”
He added, “These financial injections into the infrastructure sector are expected to create a ripple effect, driving demand for cement as a key material in construction and development projects. The growing demand for cement is evident as infrastructure projects continue to rise across the country.”
The forum also provided invaluable networking opportunities, with attendees gaining insights from over 35 distinguished speakers and connecting with more than 50 exhibitors. The event laid a strong foundation for the upcoming Expo, showcasing the significant strides the cement industry is making toward a greener, more efficient future.
The 15th Cement Expo 2025 will focus on advancing the industry’s next big step toward sustainable growth. With India’s cement sector making significant progress in decarbonisation, a key focus will be on technologies and innovations that support carbon capture, low-carbon cement production, and energy-efficient solutions.
The expo will feature over 50 exhibitors representing all aspects of the cement industry. Whether you are a manufacturer, raw material supplier, technology provider, or logistics partner, the Cement Expo 2025 offers an ideal platform to showcase your products and solutions. Attendees will have the opportunity to explore the latest advancements in cement production technology, automation, logistics, and environmental solutions, all geared toward building a greener and more sustainable future.
Exhibitor profiles will include cement manufacturers, raw material suppliers, technology and automation solutions providers, environmental and sustainability solutions providers, cement packaging and logistics, construction equipment manufacturers, admixtures and chemical suppliers, and concrete reinforcement and structural systems.

11th Indian Cement Review Conference

Held alongside the Expo, the 11th Indian Cement Review Conference will offer delegates invaluable insights into the latest trends and innovations shaping the cement industry. Focusing on sustainability, the conference will address critical issues such as energy efficiency, plant design, and emerging technologies like carbon capture and automation.
Industry leaders will share their expertise in technical forums, while specialised activities, such as plant tours and energy audits, will provide practical guidance on improving operations and efficiency. This is a prime opportunity to network with industry stakeholders, gain hands-on experience with new technologies, and acquire actionable knowledge to enhance your business.

9th Indian Cement Review Awards

The 9th Indian Cement Review Awards will recognise the fastest-growing cement companies and industry leaders for their outstanding contributions to the sector. This prestigious event will serve as a platform to honour the pioneers of innovation, sustainability, and performance within the cement industry, highlighting the sector’s commitment to growth and environmental responsibility.
As we look forward to the 15th Cement Expo 2025, we invite you to join us for two exciting days of networking, learning, and innovation. This event offers a unique opportunity to be part of the next wave of growth and sustainability in the global cement sector.

Continue Reading

Concrete

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Published

on

By

Shares
When it comes to interior design, walls are more than just structural elements—they serve as the canvas for self-expression, setting the mood and personality of a space. While paint and wallpaper have long been the go-to choices for wall finishes, wall putty is emerging as a game-changer in home décor. With its smooth finish, durability, and versatility, wall putty opens a world of creative possibilities. In this article, we explore trendy wall putty designs that can elevate your interiors, turning ordinary walls into extraordinary design statements.
Wall Putty is a Must-Have in Modern Homes
Wall putty is no longer just a preparatory material for painting; it plays a significant role in modern home aesthetics. It enhances the finish of walls, making them smoother, stronger, and resistant to cracks and moisture. Additionally, high-quality putty like Birla White Wall Putty ensures better paint adhesion, resulting in long-lasting vibrancy.
Beyond its functional benefits, wall putty allows homeowners to experiment with textures and patterns, giving walls a designer touch without the hassle of high-maintenance materials like stone or wood. Whether you’re aiming for a minimalist, rustic, or ultra-modern aesthetic, wall putty designs can help achieve the look effortlessly.
Trendy Wall Putty Designs for Stunning Interiors
1. Textured Wall Putty for a Tactile Appeal
Textured walls are a popular interior trend, adding depth and dimension to living spaces. By using wall putty, homeowners can create a variety of textures, including:
  • Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
  • Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
  • Sand Finish: A subtle grainy effect that provides a sophisticated touch.
Textured putty walls work exceptionally well in accent areas, such as behind a television unit or as a backdrop for artwork.
2. Sleek and Smooth Walls for a Luxurious Look
For those who prefer a refined and elegant aesthetic, a smooth putty finish is ideal. A flawlessly smooth wall creates a premium appearance, amplifying the impact of high-quality paints. Opting for a high-performance putty like Birla White WallCare Putty ensures a glass-like finish that complements modern and contemporary interiors.
This design is perfect for:
  • Monochrome interiors where walls serve as a sleek backdrop.
  • High-gloss or matte-painted walls that need a seamless base.
  • Spaces with minimal décor where the walls themselves make a statement.
3. Geometric & Abstract Patterns for a Contemporary Edge
Wall putty can be artistically applied to create striking geometric or abstract patterns, adding a unique character to interiors.
Popular designs include:
  • Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
  • 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
  • Asymmetrical Shapes: For a bold and avant-garde touch.
  • These patterns work best in bedrooms, study areas, or accent walls in open spaces.
4. Venetian Plaster for a Luxe European Aesthetic
Venetian plaster, an age-old technique, is making a grand comeback in modern interiors. With wall putty, you can achieve this exquisite marble-like effect, which exudes luxury and timeless charm.
This design works well for:
  • Statement walls in living rooms and foyers.
  • Elegant dining areas where a touch of opulence is desired.
  • Boutique-style bedrooms with a rich, textured finish.
A high-quality white cement-based putty can replicate this effect beautifully, making the walls look naturally luminous.
5. Dual-Tone or Ombre Walls for a Soft Gradient Effect
The ombre effect, a gradient transition between two colors, is a trendy and artistic way to enhance interiors. When applied over a smooth wall putty base, the gradient blends seamlessly, offering a dreamy, watercolor-like appeal.
This style is perfect for:
  • Children’s rooms or play areas, creating a fun and dynamic atmosphere.
  • Bedrooms with a soothing pastel gradient for a calming effect.
  • Dining spaces where a bold color fade adds character.
6. Metallic & Glossy Finishes for a Chic Look
For homeowners who love glamour and sophistication, combining wall putty with metallic paints or glossy finishes can create a high-end appeal. The smooth base of putty enhances the reflective qualities of metallic shades like gold, silver, or bronze, resulting in an opulent and dramatic effect.
Best suited for:
  • Luxurious master bedrooms and dressing areas.
  • Accent walls in dining rooms or home bars.
  • Commercial spaces like boutiques and salons.
How to Achieve the Best Wall Putty Designs
  • Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
  • Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
  • Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
  • Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
  • Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Conclusion
Wall putty has evolved beyond its traditional role, now serving as a medium for creative interior design. Whether you prefer textured finishes, sleek smooth walls, or artistic patterns, wall putty designs can elevate your home’s aesthetics while offering durability and elegance. By selecting the  best putty for wall and application technique, you can transform your interior walls into stunning masterpieces, setting the perfect backdrop for your lifestyle.
For high-quality wall finishes that stand the test of time, Birla White WallCare Putty ensures both beauty and performance, making your dream interiors a reality.

Continue Reading

Concrete

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Published

on

By

Shares
  • Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
  • Increases capacity primarily to meet growing demand in Western India along with existing regions

Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.

The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.

Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”

About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units.  Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds