Concrete
We employ a proactive maintenance strategy
Published
11 months agoon
By
admin
Raju Jain, General Manager, Wonder Cement discusses how they optimise material handling by integrating advanced technologies, automation, and sustainable practices to enhance efficiency, reduce operational costs, and minimise environmental impact.
Material handling plays a crucial role in cement production. How is your company optimising material handling systems to ensure efficiency and reduce operational costs?
At Wonder Cement, optimising material handling is key to improving overall plant efficiency and reducing operational costs. We focus on integrating advanced technologies and adopting a systematic approach to streamline our material handling processes. To minimise waste and energy consumption, we deploy automated conveyor systems that transport raw materials like limestone and gypsum with precision and reliability. These systems help in reducing the need for manual labour, which not only lowers labor costs but also minimises the potential for
human error.
Our optimisation strategies include real-time monitoring systems to track material flow and storage levels, ensuring that materials are used efficiently and without delay. We also employ energy-efficient motors and equipment that cut down on energy consumption, further driving operational savings. By utilising advanced data analytics, we can predict material needs and adjust our handling systems accordingly, leading to better resource management. In addition, our material handling systems are designed for minimal downtime, allowing us to maintain continuous operations and avoid costly interruptions. Regular maintenance protocols and use of high-quality equipment ensure long-term durability and performance, contributing to the overall cost-efficiency of our cement production processes.
What technologies or innovations has your organisation adopted to improve the safe and efficient transport of raw materials like limestone, gypsum, and clinker within the cement plant?
At Wonder Cement, scientific mining methods are utilised during limestone excavation. Our team of experts and experienced technical professionals oversee mining operations. To control dust generation, we employ wet drilling system that eliminates dust at its source. We adopt controlled blasting techniques to minimise noise, vibrations, and NOx emissions during blasting operations. Well-maintained mining equipment is used to reduce dust during loading and transportation. Additionally, water sprays are deployed on haul roads for effective dust control. We have embraced a variety of cutting-edge technologies to enhance the safe and efficient transport of raw materials within our plant. One of the primary innovations is the implementation of automated conveyor systems with high-efficiency motors and smart controls, which ensure smooth and consistent transportation of materials such as limestone, gypsum, and clinker. These conveyors are equipped with sensors that detect material flow rates and prevent overloading or spillage, which not only enhances safety but also minimises material waste.
We have also integrated dust suppression systems that mitigate dust generation during material transport. These systems help us maintain a cleaner and safer work environment while reducing the environmental impact of our operations. Additionally, the use of enclosed conveyors and fully automated bulk material handling systems prevents material exposure to the environment, reducing the risks associated with air contamination. Another key innovation is the incorporation of real-time monitoring and data analytics. Through the use of IoT (Internet of Things) sensors and AI-driven data platforms, we can monitor the health of our equipment and anticipate potential failures, enabling proactive maintenance. This reduces the risk of accidents, ensures continuous operation, and enhances overall efficiency in transporting raw materials throughout our cement plant.
How are you addressing the challenges of dust control and material spillage in your material handling processes, especially in bulk transport and storage?
At Wonder Cement , to reduce dust, spillage, and carbon emissions during heavy-duty vehicle transportation, we implemented a wagon and truck tippler system equipped with stackers and reclaimers, exceeding EPA standards and reducing carbon emissions. This setup facilitates efficient material transfer through enclosed conveyor systems. Controlling dust and preventing material spillage are critical priorities in our material handling processes, particularly during bulk transport and storage. To address dust control, we have deployed several advanced dust suppression technologies. Our primary approach involves using enclosed conveyor systems, which significantly reduce the amount of dust generated during the transport of raw materials like limestone, gypsum, and clinker. Additionally, we have installed misting and fogging systems that trap dust particles before they can become airborne, ensuring a cleaner and safer environment within the plant.
We have also incorporated dust collection systems, such as bag filters and electrostatic precipitators, at key material transfer points. These systems capture dust at the source, preventing it from escaping into the atmosphere. Regular monitoring and maintenance of these systems ensure their optimal performance, helping us meet stringent environmental regulations. Material spillage is minimised through the use of spill-resistant conveyor belts and properly designed transfer chutes. We ensure that our handling equipment is properly aligned and calibrated to avoid any unnecessary material loss. Furthermore, our real-time monitoring systems allow us to detect and address any material handling inefficiencies promptly, ensuring that spillage is kept to a minimum. By combining these efforts, we maintain a high level of operational efficiency while adhering to safety and environmental standards.
With sustainability becoming a key focus in the cement industry, what steps is your organisation taking to reduce the environmental impact of material handling, such as energy consumption and emissions?
Wonder Cement is deeply committed to reducing the environmental impact of its material handling operations. One of the primary steps we’ve taken is the integration of energy-efficient technologies across our material handling systems. We utilise high-efficiency motors, variable frequency drives (VFDs), and energy-optimised conveyor systems, which help us reduce energy consumption while maintaining operational efficiency. In terms of emissions, our focus is on minimising dust emissions through advanced dust suppression systems and using enclosed conveyors. We have also implemented real-time emissions monitoring systems to track and control particulate matter generated during material handling, ensuring compliance with environmental regulations. The installation of dust collectors, such as bag filters and electrostatic precipitators, helps capture and recycle dust back into the production process, reducing waste and emissions.
Furthermore, we are actively exploring alternative raw materials and fuels that have a lower carbon footprint. By integrating materials like fly ash and slag into our cement production process, we reduce the need for virgin raw materials, which in turn lowers the environmental impact of their extraction and transport. Our commitment to sustainability also includes efforts to optimise logistics and transportation. By streamlining material transport within the plant, we reduce fuel consumption and associated greenhouse gas emissions. These initiatives align with our broader sustainability goals, contributing to a greener, more responsible cement production process.
Automation and digitalisation are transforming material handling systems. How has your company integrated Industry 4.0 technologies like IoT, AI, and robotics to enhance material handling efficiency?
Wonder Cement has embraced Industry 4.0 technologies to significantly enhance the efficiency of our material handling systems. The integration of IoT (Internet of Things) devices throughout our plant allows us to gather real-time data on material flow, equipment performance, and operational conditions. This data is crucial for optimising our processes, as it enables us to monitor and adjust material handling systems dynamically based on demand and production needs. AI (Artificial Intelligence) plays a vital role in predictive maintenance and process optimisation. By analysing data from IoT sensors, AI algorithms can predict potential equipment failures and recommend preventive actions. This reduces unplanned downtime and prolongs the life of our machinery, ensuring smooth and continuous material transport. Additionally, robotics has been implemented in certain areas of our material handling processes, particularly in packaging and palletising operations. Robots handle these tasks with precision and speed, reducing the need for manual labor and minimising the risk of human error.
We also leverage digital twins—virtual models of our material handling systems—to simulate different scenarios and optimise performance. This helps us identify bottlenecks and inefficiencies before they impact production. The adoption of these Industry 4.0 technologies not only improves operational efficiency but also enhances safety, reduces costs, and contributes to the overall sustainability of our cement manufacturing process.
What are the primary challenges you face in handling alternative raw materials or fuels (such as waste, biomass, or fly ash), and how have you adapted your material handling infrastructure to manage these new inputs?
Handling alternative raw materials and fuels, such as waste, biomass, and fly ash, presents unique challenges due to their varying properties compared to traditional inputs. At Wonder Cement, we have adapted our material handling infrastructure to manage these challenges effectively. One of the main issues is the irregular particle size and moisture content of alternative materials, which can affect the flow and handling efficiency. To address this, we have implemented specialised conveyors and storage systems designed to accommodate the diverse characteristics of these materials. For example, we have modified our storage silos and hoppers to ensure smoother material flow and prevent blockages or clumping. In addition, we utilise advanced weighing and dosing systems to ensure precise control over the input of alternative materials, maintaining the consistency and quality of our cement.
Another challenge is the higher tendency of alternative fuels, such as biomass, to produce dust and emissions. To counter this, we have upgraded our dust suppression systems and installed filters at key transfer points. This ensures that the environmental impact of using alternative materials is minimised. Furthermore, we continuously monitor and fine-tune our material handling processes through data analytics and IoT-based systems, enabling us to adapt to the specific requirements of alternative materials. By investing in this infrastructure, we are able to incorporate sustainable materials into our production processes without compromising efficiency or
product quality.
What role do preventive maintenance and condition monitoring play in your material handling operations, and how does this contribute to minimising downtime and enhancing equipment lifespan?
Preventive maintenance and condition monitoring are integral to Wonder Cement’s approach to material handling operations. We employ a proactive maintenance strategy that focuses on regular inspections, timely servicing, and the early detection of potential issues to ensure the longevity and efficiency of our equipment. Condition monitoring systems, such as vibration analysis, temperature sensors, and oil analysis, are used to track the health of our material handling equipment in real time. By continuously monitoring the performance of critical components like conveyor belts, motors, and bearings, we can identify early signs of wear or malfunction. This allows us to schedule maintenance before a failure occurs, significantly reducing unplanned downtime and preventing costly breakdowns.
In addition, predictive maintenance tools, powered by AI and data analytics, enable us to predict when specific equipment will require servicing based on historical performance data. This not only enhances the lifespan of our machinery but also optimises maintenance schedules, ensuring that equipment is serviced only when necessary, thus avoiding unnecessary downtime. Preventive maintenance also improves safety, as it reduces the likelihood of accidents caused by equipment failure. Ultimately, by adopting these strategies, we can maintain a high level of operational efficiency, minimise production interruptions, and extend the service life of our material handling systems.
Looking forward, what future trends do you foresee in material handling for the cement industry, and how is your company preparing to adopt these advancements to stay competitive?
As the cement industry continues to evolve, several key trends in material handling are likely to shape the future. One of the most significant trends is the increased adoption of digitalisation and automation, driven by Industry 4.0 technologies. At Wonder Cement, we are preparing for this shift by investing in IoT, AI, and robotics to enhance the efficiency, safety, and sustainability of our material handling processes. Another emerging trend is the use of alternative raw materials and fuels, as the industry moves towards more sustainable production practices. We are adapting our material handling infrastructure to accommodate these new inputs, such as waste-derived fuels and biomass, which require specialised equipment and handling techniques.
Energy efficiency and emissions reduction will also be key focuses in the coming years. We foresee a greater emphasis on energy-efficient motors, renewable energy sources, and advanced dust suppression technologies to minimise the environmental impact of material handling. Our commitment to sustainability is evident in our continuous efforts to reduce energy consumption and implement cleaner technologies across our operations. Additionally, predictive maintenance and advanced analytics will play an increasingly important role in optimising equipment performance and minimising downtime. By staying at the forefront of these trends and integrating them into our operations, Wonder Cement is well-positioned to remain competitive in an evolving industry while maintaining our commitment to innovation and sustainability.
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
3 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
