Concrete
Material Movement
Published
2 months agoon
By
adminFrom automation to dust control, cutting-edge material handling systems are revolutionising cement production. ICR delves into how innovation is enhancing efficiency, safety, and sustainability in the cement industry.
Material handling systems play a crucial role in the cement industry, ensuring the efficient and safe movement of raw materials and finished products throughout the production process. These systems encompass various equipment and technologies designed to transport, store, and manage materials, including limestone, clay, gypsum and clinker.
The importance of effective material handling in cement production cannot be overstated. First, it significantly impacts operational efficiency by minimising downtime and optimising workflows. A well-designed material handling system reduces the likelihood of blockages and equipment failures, which can lead to costly interruptions. For instance, automated systems can enhance the speed and precision of material transfers, allowing for smoother operations and faster production cycles.
Moreover, effective material handling contributes to safety in the workplace. By automating tasks that involve heavy lifting or handling hazardous materials, the risk of accidents and injuries is considerably lowered. Implementing advanced technologies such as conveyors, air cannons, and dust control systems not only enhances safety but also supports environmental compliance by minimising dust emissions and waste generation.
Furthermore, material handling systems facilitate better inventory management and resource utilisation. By accurately controlling the flow of materials, plants can maintain optimal stock levels, reducing excess inventory and the associated carrying costs. This leads to improved profitability and sustainability as resources are utilised more efficiently.
Material handling systems are integral to the cement production process, driving efficiency, safety, and sustainability. As the industry continues to evolve, investing in innovative material handling technologies will be essential for cement manufacturers seeking to enhance their competitive edge and meet growing market demands.
Dust and emissions control methods
In the cement industry, managing dust and emissions during material transfer is critical for complying with environmental regulations and ensuring a sustainable operational framework. Excessive dust not only poses health risks to workers but also contributes to environmental degradation. Therefore, cement manufacturers are increasingly adopting effective dust control methods and emission reduction technologies throughout the material handling process.
- Enclosed conveyors: Utilising enclosed or covered conveyor systems significantly reduces dust emissions during the transport of raw materials. These systems minimise the exposure of materials to ambient air, effectively containing dust and preventing it from dispersing into the atmosphere.
- Dust suppression systems: Implementing dust suppression systems, such as water sprays or misting systems, helps to control airborne particulates during material transfer. By applying water to the material surface, these systems reduce the amount of dust generated during loading and unloading operations.
- Baghouse filters: For processes that generate fine dust, baghouse filters are an effective solution. These air pollution control devices capture particulate matter from exhaust gases, ensuring that emissions meet regulatory standards. By using fabric filters to trap dust particles, baghouses significantly improve air quality.
- Air cannons and vibrators: Air cannons, such as Martin® Typhoon Air Cannons, can be employed to dislodge material buildup in transfer points. This technology helps to minimise the need for manual cleaning, reducing the likelihood of dust generation during material handling.
- Sealed transfer points: Sealing transfer points where materials are loaded and unloaded prevents dust from escaping into the environment. Implementing hoppers and chutes with proper sealing mechanisms ensures that dust remains contained during material transfer.
- Real-time monitoring: Installing continuous emissions monitoring systems (CEMS) provides real-time data on dust and emission levels. This allows operators to promptly address any issues and adjust processes as needed to comply with environmental regulations.
- Employee training: Educating employees on best practices for material handling and dust control is vital. Proper training ensures that staff understand the importance of minimising dust emissions and can implement appropriate measures effectively.
By incorporating these methods into their operations, cement manufacturers can significantly reduce dust and emissions during material transfer, ensuring compliance with environmental regulations while promoting a healthier workplace and contributing to sustainable practices. As regulations continue to evolve, ongoing investment in innovative dust control technologies will be essential for the cement industry to meet both environmental and operational goals.
Innovations in material handling
In the cement industry, efficient material handling is crucial for smooth production and operational excellence. Over the years, innovations in equipment like air cannons, conveyors, feeders, and advanced chute designs have significantly enhanced the performance and reliability of material transfer systems, improved productivity and reduced downtime.
Marco Campanari, CEO, CICSA Group, says, “Our R&D department is always active, continuously driving innovation throughout the year. Specifically, we have developed advanced techniques to refine our welding technology, focusing on the butt-flash welding technology with more effective process control. Additionally, we have perfected sophisticated heat treatments, particularly in advanced case hardening processes. These innovations significantly increase the durability and extend the lifespan of our chains.”
Air cannons: Air cannons, such as the Martin® Typhoon Air Cannons, have revolutionised material flow management by preventing blockages and material build-ups in storage vessels, silos, and chutes. These devices release powerful bursts of compressed air to clear obstructions, reducing the need for manual interventions like poking or hammering. This not only enhances material flow but also improves worker safety and plant efficiency by minimising downtime.
Conveyors: Modern conveyors have become more advanced, with enclosed or covered designs that minimise dust emissions and improve material containment. Belt and screw conveyors are now equipped with energy-efficient motors and are designed to handle larger capacities while maintaining smooth material transfer, reducing spillage and wear. Enclosed conveyors, such as pipe conveyors, are particularly effective in reducing environmental impact by containing dust during transportation.
Feeders: Innovations in feeding systems, such as gravimetric and volumetric feeders, ensure precise and consistent material flow. These feeders are crucial for dosing raw materials into the production process, allowing for better control over material proportions, which directly impacts the quality of the final product. Advanced feeders are now equipped with automation and monitoring capabilities to maintain optimal flow rates, reduce wastage, and ensure uninterrupted production.
Advanced chute designs: Chute blockages have long been a challenge in cement plants, often leading to production stoppages and increased maintenance costs. Modern chute designs incorporate features such as wear-resistant liners, curved profiles and optimally angled surfaces to prevent material sticking and reduce wear. These advanced designs also help in controlling dust and minimising material spillage during transfer, improving the overall efficiency of the material handling process.
“Another key trend fuelling growth in the CE industry is the rising demand for technologically advanced and high-performance machinery. For instance, earth-moving equipment, such as backhoe loaders, are robust machines specifically designed for heavy-duty construction tasks. The latest generation of these machines boasts superior designs, enhanced engine technologies, and innovative features. They are equipped with smart connectivity options, including modern digital instrument clusters and advanced onboard diagnostics,” says, Saroj Chouhan, Fortune Business Insights.
Together, these innovations in material handling equipment have transformed cement plant operations, improving reliability, reducing operational costs, and ensuring compliance with environmental standards. By leveraging technologies like air cannons, efficient conveyors, precision feeders, and optimised chutes, cement manufacturers can achieve higher levels of productivity while minimising downtime and enhancing sustainability.
Role of automation and Industry 4.0
The integration of automation and Industry 4.0 technologies is transforming material handling systems in cement plants, making them more efficient, reliable, and sustainable. Advanced automation systems enable real-time monitoring, precise control and optimisation of material transfer processes, reducing human intervention and minimising operational disruptions.
Automation allows for the seamless operation of conveyors, feeders and crushers, enhancing the precision of material flow while reducing energy consumption and wear. Automated systems can also monitor equipment health, predict maintenance needs, and improve decision-making through data analytics, ensuring uninterrupted material handling.
Industry 4.0 technologies such as IoT sensors, cloud computing and AI-driven analytics provide deep insights into material handling systems. Real-time data on material flow, equipment performance, and energy usage allows plant operators to optimise the entire production chain, minimising bottlenecks and maximising efficiency. Predictive maintenance powered by Industry 4.0 reduces unexpected downtimes by alerting operators to potential issues before they lead to costly stoppages.
Together, automation and Industry 4.0 are revolutionising material handling in cement plants, driving operational efficiency, reducing costs, and improving sustainability through smarter and more data-driven processes.
Energy saving in material handling
Energy-saving solutions are becoming critical in cement plants to improve operational efficiency and reduce costs. One of the most effective methods is the use of energy-efficient motors, which consume less power while delivering the same output as traditional motors. These motors reduce energy losses and have a longer operational life, contributing to both cost savings and sustainability goals. Additionally, variable frequency drives (VFDs) offer significant energy savings by adjusting the speed of motors based on the demand of the material handling process, eliminating unnecessary power consumption during low-demand periods.
Optimising equipment layouts is another crucial strategy to enhance energy efficiency. By streamlining material transfer routes, reducing unnecessary material handling steps, and ensuring shorter conveyor lengths, plants can minimise the energy required for material transport. Well-designed layouts, in conjunction with efficient motors and VFDs, help create a more energy-conscious operation that reduces power usage, lowers operational costs, and contributes to a plant’s environmental objectives.
Challenges in material handling
Material handling in cement plants presents several key challenges that impact both operational efficiency and overall productivity. One major challenge is dealing with abrasive and bulk materials such as limestone, clinker, and raw meal, which can cause significant wear and tear on equipment. This leads to frequent maintenance requirements, unexpected downtimes, and increased operational costs. Additionally, handling these materials efficiently without causing blockages or disruptions during transfer is critical, yet often difficult, due to
the complexity of conveying systems and the heavy loads involved.
Another significant challenge is controlling dust and emissions during material transfer, particularly in light of increasingly stringent environmental regulations. Dust generation not only creates health and safety risks for workers but also contributes to environmental pollution. Effective dust control systems, such as dust suppression technologies and enclosed conveyors, are essential, but implementing these solutions while maintaining high material transfer efficiency can be complex. Balancing operational demands with regulatory compliance and sustainability goals remains a constant challenge for the cement industry.
Future trends in material handling
Emerging technologies are set to revolutionise material handling in the cement industry, offering the potential to enhance efficiency, reduce costs, and improve sustainability. Automation and Industry 4.0 technologies are leading this transformation, enabling real-time monitoring and predictive maintenance through sensors and data analytics. With the integration of Internet of Things (IoT) and AI-driven systems, cement plants can optimise equipment performance, detect issues before they cause downtime, and streamline material flow, all while reducing human intervention and error. These advancements not only increase productivity but also help in energy conservation by ensuring equipment operates at optimal efficiency.
Robotics and advanced material handling equipment like autonomous conveyors, drones for inventory management, and smart feeders are also gaining traction. These technologies reduce the physical burden on workers, minimise the risk of injury, and ensure continuous operations with minimal disruption. Additionally, innovations in sustainable technologies, such as energy-efficient motors, smart grid integration, and eco-friendly materials, further support the industry’s move towards greener operations. Together, these emerging technologies promise to transform material handling systems, making them more reliable, sustainable, and cost-effective in the future.
Conclusion
Material handling plays a pivotal role in the efficiency and sustainability of cement production. As the industry faces growing challenges such as dust control, energy consumption, and environmental regulations, the need for innovative solutions has become more critical than ever. Advanced technologies like air cannons, optimised conveyors and energy-saving equipment have already begun transforming cement plants, addressing these key challenges while improving overall operational efficiency. By integrating automated systems and Industry 4.0 capabilities, cement manufacturers can enhance material handling processes, reduce downtime, and achieve better environmental outcomes.
Looking ahead, the adoption of emerging technologies, including robotics, AI-driven systems and sustainable material handling innovations, will continue to drive the evolution of cement plants. These advancements hold the potential to significantly improve material flow, reduce operational costs and contribute to the industry’s ongoing efforts toward a greener and more efficient future. As cement plants embrace these innovations, they are well-positioned to meet the demands of modern production while maintaining a strong focus on sustainability and operational excellence.
– Kanika Mathur
You may like
-
The Future of Concreting
-
Cement manufacturers report margin decline in September quarter amid lower prices
-
Lower sales realization impacts margins for cement makers in Q2 FY25
-
Greener Mining, Stronger Cement
-
Typhoon air cannons unblock success in cement production
-
We employ a proactive maintenance strategy
Concrete
Jefferies’ Optimism Fuels Cement Stock Rally
The industry is aiming price hikes of Rs 10-15 per bag in December.
Published
3 weeks agoon
December 4, 2024By
adminCement stocks surged over 5% on Monday, driven by Jefferies’ positive outlook on demand recovery, supported by increased government capital expenditure and favourable price trends.
JK Cement led the rally with a 5.3% jump, while UltraTech Cement rose 3.82%, making it the top performer on the Nifty 50. Dalmia Bharat and Grasim Industries gained over 3% each, with Shree Cement and Ambuja Cement adding 2.77% and 1.32%, respectively.
“Cement stocks have been consolidating without significant upward movement for over a year,” noted Vikas Jain, head of research at Reliance Securities. “The Jefferies report with positive price feedback prompted a revaluation of these stocks today.”
According to Jefferies, cement prices were stable in November, with earlier declines bottoming out. The industry is now targeting price hikes of Rs 10-15 per bag in December.
The brokerage highlighted moderate demand growth in October and November, with recovery expected to strengthen in the fourth quarter, supported by a revival in government infrastructure spending.
Analysts are optimistic about a stronger recovery in the latter half of FY25, driven by anticipated increases in government investments in infrastructure projects.
(ET)
Concrete
Steel Ministry Proposes 25% Safeguard Duty on Steel Imports
The duty aims to counter the impact of rising low-cost steel imports.
Published
3 weeks agoon
December 4, 2024By
adminThe Ministry of Steel has proposed a 25% safeguard duty on certain steel imports to address concerns raised by domestic producers. The proposal emerged during a meeting between Union Steel Minister H.D. Kumaraswamy and Commerce and Industry Minister Piyush Goyal in New Delhi, attended by senior officials and executives from leading steel companies like SAIL, Tata Steel, JSW Steel, and AMNS India.
Following the meeting, Goyal highlighted on X the importance of steel and metallurgical coke industries in India’s development, emphasising discussions on boosting production, improving quality, and enhancing global competitiveness. Kumaraswamy echoed the sentiment, pledging collaboration between ministries to create a business-friendly environment for domestic steelmakers.
The safeguard duty proposal aims to counter the impact of rising low-cost steel imports, particularly from free trade agreement (FTA) nations. Steel Secretary Sandeep Poundrik noted that 62% of steel imports currently enter at zero duty under FTAs, with imports rising to 5.51 million tonnes (MT) during April-September 2024-25, compared to 3.66 MT in the same period last year. Imports from China surged significantly, reaching 1.85 MT, up from 1.02 MT a year ago.
Industry experts, including think tank GTRI, have raised concerns about FTAs, highlighting cases where foreign producers partner with Indian firms to re-import steel at concessional rates. GTRI founder Ajay Srivastava also pointed to challenges like port delays and regulatory hurdles, which strain over 10,000 steel user units in India.
The government’s proposal reflects its commitment to supporting the domestic steel industry while addressing trade imbalances and promoting a self-reliant manufacturing sector.
(ET)
Concrete
India Imposes Anti-Dumping Duty on Solar Panel Aluminium Frames
Move boosts domestic aluminium industry, curbs low-cost imports
Published
3 weeks agoon
December 4, 2024By
adminThe Indian government has introduced anti-dumping duties on anodized aluminium frames for solar panels and modules imported from China, a move hailed by the Aluminium Association of India (AAI) as a significant step toward fostering a self-reliant aluminium sector.
The duties, effective for five years, aim to counter the influx of low-cost imports that have hindered domestic manufacturing. According to the Ministry of Finance, Chinese dumping has limited India’s ability to develop local production capabilities.
Ahead of Budget 2025, the aluminium industry has urged the government to introduce stronger trade protections. Key demands include raising import duties on primary and downstream aluminium products from 7.5% to 10% and imposing a uniform 7.5% duty on aluminium scrap to curb the influx of low-quality imports.
India’s heavy reliance on aluminium imports, which now account for 54% of the country’s demand, has resulted in an annual foreign exchange outflow of Rupees 562.91 billion. Scrap imports, doubling over the last decade, have surged to 1,825 KT in FY25, primarily sourced from China, the Middle East, the US, and the UK.
The AAI noted that while advanced economies like the US and China impose strict tariffs and restrictions to protect their aluminium industries, India has become the largest importer of aluminium scrap globally. This trend undermines local producers, who are urging robust measures to enhance the domestic aluminium ecosystem.
With India’s aluminium demand projected to reach 10 million tonnes by 2030, industry leaders emphasize the need for stronger policies to support local production and drive investments in capacity expansion. The anti-dumping duties on solar panel components, they say, are a vital first step in building a sustainable and competitive aluminium sector.