Connect with us

Concrete

Concrete as a Carbon Sink for Reducing Global Warming

Published

on

Shares

Dr Anjan K Chatterjee, Managing Director, Conmat Technologies, Kolkata, presents a comprehensive analysis of the intricate dynamics of the carbon cycle and its implications for global climate change, particularly focusing on the role of the cement and concrete industry. Examining the interplay between carbon sources and sinks, he explores the potential of concrete as a carbon sink, shedding light on its carbonation process and the implications for CO2 sequestration, in the first instalment of this two-part series.

The ‘Carbon Cycle’ that interconnects the natural carbon sources and carbon sinks is a critical life-support process in our planet (Figure 1). The most abundant greenhouse gas, carbon dioxide (CO2), is continuously recycled on the earth. Carbon sources refer to the processes that release CO2 to the atmosphere, while carbon sinks are the processes that absorb it. As we know, forests, soil, oceans, the atmosphere, and fossil fuels are the important stores of carbon and it moves between these different stores that act either as sinks or sources. It is also understood that a sink absorbs more carbon than it gives off, while a source emits more carbon than it absorbs. The amount of carbon in the atmosphere at any time depends on the balance that exists between the sinks and sources.

Figure 1: Carbon sources and sinks constituting the carbon cycles

Before the Industrial Revolution the carbon cycle was relatively balanced but it has been tilted later towards higher concentration of carbon in the atmosphere due to the increasing industrial activities on the planet (Figure 2). This has been happening because humans produce the greenhouse gases (GHG), and more particularly CO2 and CH4 (methane), much faster than the natural sources can absorb them. The production-based global generation of GHG, and the top eight GHG emitting countries in 2018 are shown below:

  • China: 11,706 MT CO2-e
  • USA: 5,794
  • India: 3,347
  • EU + UK: 3,333
  • Russia: 1,992
  • Indonesia: 1,704
  • Brazil: 1,421
  • Japan: 1,155
  • Total World: 48,928
    Among the industrial activities, the production of Portland cement ranks high in generating CO2, creating up to 8 per cent of worldwide man-made emissions of this gas. This is identified as a major contributor to the probable rise in average global temperature exceeding 20C. In recent years, a school of thought has emerged whether it is justified to consider the amount of CO2 emitted directly from the cement manufacturing process as the total cement industry emissions to affect the global temperature rise. This is due to the fact that cement is used mainly in the form of concrete, mortar and plaster in built structures, which over time undergo carbonation involving reverse penetration of CO2. The knowledge about carbonation of existing concrete structures is well-established. The CO2 uptake by the cement-based products including concrete has not been considered historically in the CO2 estimation for climate change. Furthermore, there are many technologies in development, which promise significant potential of enhancing the recycling of CO2 in concrete and cement-based products. Thus, it seems justified to consider that, while the cement production is a carbon source, the cement-based products may act as carbon sinks. The concept of concrete as a carbon sink will be a game-changer for the cement and concrete industry as a whole for improving the climate performance of the sector.

Recap of Concrete Carbonation
Carbonation of concrete has been a subject of study primarily for understanding the mechanism of reinforcement corrosion and the resultant deterioration of concrete. In concrete carbonation, the reaction process relates to the cement matrix part of the concrete and its occurrence is eventually inevitable. It is caused by the ingress of atmospheric CO2 reacting with the pore water to form carbonic acid, which in turn reacts with the lime-bearing hydrated phases in the cement matrix.. This neutralises the alkalinity of concrete and occurs progressively. A carbonation front moves through the concrete until it reaches the steel. The passive layer then breaks down as pH falls from over 12.0 to around 8.0. In fact, corrosion of steel starts in the presence of O2 and H2O as pH falls below 11.0.


A typical Portland cement concrete may show a carbonation depth of 5-8 mm after about 10 years, rising to 10-15 mm after 50 years. Therefore, structures with low concrete cover over the reinforcing steel will show carbonation-induced corrosion more quickly than those with good cover. The rate of advancement of the carbonation front is dependent on the diffusion kinetics of CO2 in concrete, which in turn is related to its quality. Concretes made with high w/c ratios and with low cementitious materials content will carbonate faster than low-porosity high-strength concrete. The blended cement concretes, because of their low alkaline reserves, tend to carbonate faster than the grade of concrete for an equivalent OPC content. The rate of carbonation is also affected by the environmental conditions. Carbonation is more rapid in fairly dry and wet-and-dry cyclic environments.
Though carbonation is a harmful process for the reinforcement steel, for the concrete mass without metal reinforcement, the effect is beneficial, because the product of carbonation reaction CaCO3 has larger volume than the major hydrating phase Ca(OH)2, thus resulting in better pore filling and increase in the strength of concrete. It has also been observed that the carbonation reactions occur during the entire life cycle of a structure or a concrete element, though it might be initiated at the exposed surfaces and limited to cover concrete, jointing mortar and plasters and renderings. Interestingly, a study on concrete bridges cast between 11 and 76 years revealed that at 76 years of casting carbonation of concrete was still evident except that the carbonation rate was lower compared to newer structures [1].

Carbonation reaction
It is known that surfaces of concrete and other cement-based materials in direct contact with carbon dioxide and water are prone to carbonation, which spreads inwards at a rate proportional to the square root of time. The hydrated cement phases and the pore solution are the starting points for carbonation. There are four important hydration products with varying amounts of CaO available in them for carbonation as shown in Table 1 [2]. Portlandite (CH) and C-S-H gel are the most abundant in occurrence with high binding capacity.
Carbon dioxide dissolves in the pore solution of cement paste, producing carbonate ions, which react with calcium ions to produce solid calcium carbonate. The hydroxyl and calcium ions required by these reactions are obtained by the dissolution of calcium hydroxide and decomposition of the hydrated silicate and aluminate phases. The reactions involving the calcium hydroxide and calcium silicate hydrate phases may be represented by the following equations:
CO2 + 2OH- ? CO32- + H2O
(1)
Ca2+ + CO32- ? CaCO3 (2)
Ca(OH)2 ? Ca2+ + 2OH- (3)
xCaO.SiO2(aq) + zH2O ? yCa2+ + 2yOH- + (x – y)CaO.SiO2(aq)
(4)
The rate and degree of carbonation is governed mainly by the factors such as the size and geometry of the porous structure, the degree of water saturation in the pore system, the type of cement and supplementary cementitious materials, the chemical composition of the pore solution, the temperature, and the concentration of CO2 in the atmosphere. As already stated above, the carbonation of the hydrated cement matrix results in increase of strength and hardness in concrete and also reduction of its permeability and shrinkage. The concrete becomes more volume stable and consequently, further volume destabilisation due to subsequent moisture changes is prevented.

co2 Uptake in Concrete
The degree of carbonation in concrete is generally determined in the laboratory by the phenolphthalein test. The phenolphthalein applied carbonated periphery in a broken piece of a carbonated concrete is shown in Figure 4.

Figure 4: Carbonated periphery of a crushed concrete fragment as determined by the phenolphthalein test.

It is generally observed that in the first year of service the carbonation depth varies from I mm in dense dry concrete to 5 mm or more in more permeable concrete with high water content. The depth increases in subsequent years. The carbonation process proceeds faster when RH lies in the range of 50-75 per cent.
Calculating the uptake of CO2 in concrete and other cement-containing products as well as its impact on the global climate is a complex task. There is no unambiguous calculation method that can be used for this purpose. However, certain approximate and empirical models were attempted for this purpose and the results were significantly different. A comprehensive summary was published in 2016 [3]. The findings can be broadly summarised as follows:

  • A study conducted in 2005 in four Nordic studies showed that within 50 years the projected extent of carbonation will range from 24% to 43%. The penetration depth will be about 32 mm.
  • A 1997 study of 18 bridges, aged from 14 to 56 years at the time of study, reported carbonation depths of up to 50 mm.
  • A 2017 study of the Itaipu dam commissioned in 1984 in Paraguay reported the average and maximum carbonation depths of 33 mm and 73.3 mm.
  • A 2018 study of two 100-year old bridges in Slovakia revealed that the exposed surfaces carbonated to a depth of 60 mm, but some surfaces protected by 2-3 mm layers of impermeable plaster prevented carbonation.
  • The demolished concrete materials showed faster rates of carbonation.


Another study, based on different datasets compiled from field surveys in China and a comprehensive synthesis of prior data, was reported in [4]. The study attempted to model the global atmospheric CO2 uptake not only in concrete but also in mortar, construction cement waste, and cement kiln dust between 1930 and 2013 in four regions, e.g., China, the US, Europe and the rest of the world. Furthermore, the study included a sensitivity analysis of the uptake estimates in respect of 26 different variables. Without going into the details of calculations, it may be stated that for concrete three stages in the lifecycle were considered – service life, demolition and secondary use of concrete waste. In each case the exposed surface areas, thicknesses, exposure conditions including the atmospheric CO2 concentrations in different regions, and exposure time were taken into account in the modelling exercise. The average service life of the buildings was derived from the range of 35 to 70 years. The effects of different strength classes in concrete, exposure conditions, additions and coatings were explicitly modelled. The calculation of carbon sequestration from mortar was calculated from mortar thickness and annual carbonation depth. The carbon uptake in construction waste and kiln dust was calculated with due consideration of the generation rate and measured carbonation fractions. For modelling, Fick’s diffusion law was used and the carbonation rate coefficients were derived from both experimental measurements and review of relevant literature. The net annual CO2 emissions related to cement production minus the estimated annual CO2 sequestration due to carbonation of cement materials is shown in Figure 5. Between 1990 and 2013 the annual carbon uptake has shown an increase 5.8 per cent per year on average, slightly faster than 5.4 per cent growth in process emissions. Cumulatively it was estimated that an amount of 4.5 GtCyr-1 has been sequestered by cement materials since 1930 and more specifically, the annual sequestration rate increased from 0.10GtCyr-1 in 1998 to 0.25 GtCyr-1 in 2013. In total, it was estimated that roughly 43 per cent of the cumulative cement process emissions of CO2 produced between 1930 and 2013 have been reabsorbed by carbonating cement materials.

A few other points that emerged from this study are worth mentioning:

  • During the period of study, based on the regional details, the break-up of CO2 storage was 68 per cent from concrete, 27 per cent from mortar, 2 per cent from cement losses in the course of construction, and 3 per cent from cement kiln dust
  • Cement mortars acted as the most effective carbon sink, though only 30 per cent of cement is used in it. This was apparently because of the extensive exposed exterior surface of mortars.
  • Despite a relatively smaller exposure area, concrete was the second largest contributor to the carbon sink, because of its sheer volume.
  • The cement losses during construction and the cement kiln dust at the production stage were also contributors to the total sink.

Reporting co2 Emissions
Three international systems for monitoring, quantifying and reporting of CO2 emissions are prevalent:

  • Reporting of national CO2 emissions to UNFCCC (United Nations Framework Convention on Climate Change)
  • EU climate and energy frameworks for lowering climate impact
  • Environmental product declaration (EPD)


The guidelines for UNFCCC reporting were developed by the IPCC (Intergovernmental Panel on Climate Change). Although the carbonation of cement products was included in the document in 2006 but the scientific consensus then was not in favour of inclusion into national inventories. Since it has now emerged from various studies that the concrete as carbon sink must be accounted for in calculating the net emissions of CO2, there is an urgent need to review the IPCC guidelines. The situation is not much different in the EU systems that include ETS (Emission Trading System) and ESR (Effort Sharing Regulation). It appears that there is some flexibility in EU/ESR to consider CO2 bound in construction timber but not for the emissions and uptake by the concrete construction. In EPD, there is a scope for following the European standard EN 16757:2017 (Sustainability of construction works – Environmental Product Declarations – Product Category Rules for Concrete and Concrete Elements), though mortars and renderings are not covered in the standard.
Thus, there is a visible gap in developing a scientifically reliable approach for tracking and reporting of CO2 emissions and absorption in the cement, cement-based building products and concrete construction sectors at the national and international levels.

Modeling approach for calculating CO2 uptake in existing concrete structures
A comprehensive review has been presented in [5]. The emission and uptake model, illustrated by the author, is reproduced in Figure 6. Compared to the emission process, the uptake processes are much slower and longer. The primary uptake is by concrete structures such as bridges, house frames, concrete tiles, concrete roads, railway sleepers, cement mortars, etc. The uptake by the post-demolition secondary products refers to crushed concrete, which may be used in as a road base or for landfilling. A complete CO2 uptake model must consider both the primary and secondary uptakes with different timeframes.
The depth of carbonation, d, can be calculated by the well-established formula: d=kvt, where, t is time and k is the rate of carbonation, depending on the exposure and concrete quality. In addition, it is necessary to know another parameter, DOC (Degree of Carbonation), defined as the amount of CO2 uptake in relation to the theoretical maximum CO2 uptake, corresponding to 100 per cent DOC. While the theoretical maximum uptake can be taken as the amount of CO2 emitted from the limestone calcination in the clinker making process, the degree of carbonation may be determined by the phenolphthalein test on concrete samples. Values of k and DOC are provided in the annexure to EN 16757:2018.
The CO2 uptake in kg per m2 of concrete during t years for any application can be calculated as CO2 uptake at a surface = (k x DOC)(v (t)/1000) x Utcc x C, (5)
Where k is the rate of carbonation for the surface in mm/v(t),
DOC is degree of carbonation for the surface,
T is the number of years, Utcc is the maximum theoretical uptake in kg CO2/kg cement (e.g., ~0.49 for CEM I), C is the cement content in kg cement/m3 concrete.
For an application, structure or product the total CO2 uptake in kg may then be calculated, based on the sum of the uptake at all different surfaces according to the equation

Figure 6: Schematic diagram of the CO2 emission and uptake model.


Total CO2 uptake = S(ki x DOCi x Ai) x Utcc x C (6) where i denotes surfaces and A is the surface area in m2.
Further, the CO2 uptake per m3 can be obtained by dividing the total uptake by the total volume of concrete.
The blended cements or concrete with additions like granulated slag, fly ash or calcined clay are normally considered to have higher carbonation rates but precise and reliable data is not readily available. Hence, a possible way out for the present may be to apply a factor, corresponding to the clinker content in the blended cement, to the theoretical uptake computed for the normal Portland cement such as CEM I.
Further to the above approach of modeling, two other progressively more precise approaches, termed as tier 2 and tier 3, have been proposed in [5], These refined approaches essentially are based on the use of historical cement production and application statistics in a country or a region with varying timeframes. The three tiers will also differ in respect of the uptake parameters at the end-of-life stage and the secondary use stage of concrete. The intent is to have a reliable estimate of net emissions of CO2 from the cement industry after proper accounting of reabsorption of CO2 in concrete and other cement-based building products.

*References will be provided in the concluding part, in the next issue

ABOUT THE AUTHOR
Dr Anjan K Chatterjee is a Fellow at the Indian National Academy of Engineering, a Materials Scientist and the Author of ‘Cement Production Technology: Principles and Practice.’

Table 1: Major hydration products of Portland cement and their binding capacity
Compositional parameters CSH CH AFm AFt All
Hydrate phase content, % 50 25 10 10 95
CaO molar ratio 0.42 0.76 0.36 0.27 –
CaO % corresponding to the hydrate phase content 21 19 3.6 2.7 46
Assumed degree of carbonation, % 50 100 75 50 –
CaO available for carbonation in the hydrate phases, % 11 19 2.7 1.3 34
CaO available for carbonation relative to the total CaO in the hydrate phases, % 23.9 41.3 5.9 2.8 74

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News