Concrete
Using Slag as Fine Aggregate in Concrete
Published
1 year agoon
By
admin
Disposal of waste slag is a major concern and is perceived as an environmental hazard across the steel industry. Nagesh Veeturi, Executive Director – Civil, and Sumanta Sahu, DGM – Quality, KEC International, investigate the possibility of utilising slag as a fine aggregate and its effect on the strength and workability parameters of concrete.
Concrete is one of the major construction materials in civil construction. It is a composite material with cement, aggregate, sand, admixture and water as ingredients. River sand and Manufactured Sand are mostly used as fine aggregate in concrete. River sand is formed by the natural weathering of rocks over many years and is preferred to be used as fine aggregate. Manufactured Sand is produced by crushing hard rocks into smaller sizes using a crusher followed by washing to use in concrete. The growth of infrastructure and building projects demand the use of huge quantities of sand in concrete.
The mining of sand from riverbeds is posing a serious threat to the environment causing the erosion of riverbeds and banks, triggering landslides, inducing loss of vegetation on the riverbanks, lowering the underground water table, etc. Hence, sand mining from riverbeds and rock is being restricted or banned by the authorities nowadays. To nullify the above concerns, concrete mix trials were conducted in our quality laboratory by using LD slag and blast furnace slag as fine aggregate.
LD Slag
LD slag is a byproduct of the steel industry. It is produced from impurities during the steel-making process. LD Slag consists of calcium, magnesium, iron, silicon and aluminium oxides minerals. During the production of steel, the slag is separated from steel in the furnace, and steel slag fine aggregate is formed after quenching the molten slag with water. There are many grades of steel produced and properties of steel slag vary depending on raw materials used for steel production. LD slag is typically granulated and used as a fine aggregate. Normally it is heavier than sand and its specific gravity is observed to be 3.2 to 3.6 with water absorption around 3 per cent.
Production process of LD Slag.
Due to its high density, segregation is observed as a fine aggregate in concrete. Materials can be used as partial replacement of fine aggregate.
Blast furnace slag
Blast furnace slag is a byproduct produced during the iron making process in blast furnaces. During the smelting process, iron ores are fed into the furnace at high temperature. The process leads to the production of molten iron and waste materials. Slag, which is a waste material, is separated and quenched with water. This rapid cooling process solidifies the slag into granular particles. Blast furnace slag is observed to be lighter than sand, specific gravity of sand is found to be 2.01.
Concrete mixes with slag as fine aggregate
Concrete mix trials were conducted with LD slag, BF slag as fine aggregate. Due to the high density of LD slag, segregation was noticed on concrete mixes. The same segregation is observed in concrete mix by using BF slag due to its lightweight. Further concrete mix trials were conducted by mixing LD slag and BF slag with different proportions – this is done to study the initial properties of concrete such as cohesiveness and workability retention.
The concrete mix is observed to be cohesive
with good workability retention by using LD slag and BF slag as fine aggregate with the same
proportions. Other properties of concrete such as setting, and strength were observed complying to specification requirements.
Benefits of using LD slag and BF slag as fine aggregate
Durability: Calcium oxide and silicon oxide are prime chemicals used in the composition of LD slag and BF slag, and both possess pozzolanic properties. calcium oxide and silicon oxide react with calcium hydroxide produced during hydration of cement and increases strength and permeability properties
of concrete.
Sustainable approach: LD slag and BF slag are the by-products from the iron industry which makes it an industrial waste product. Using materials as fine aggregate helps to conserve natural resources. Storage of this material is a major concern in industry. Utilisation of LD slag and BF slag as fine aggregate minimise storage area, air pollution.
Reduction in carbon footprint and heat of hydration: The use of LD slag and BF slag as a fine aggregate leads to reduction in cement content in concrete mixes. Cement is a major source of rise in temperature in concrete mixes that leads to increase in carbon emission during its production process. Reduction in cement content minimises the heat of hydration and prevents thermal cracks in concrete.
Enhance workability in concrete mixes: Workability in concrete is increased due to the even surface of LD slag and BF slag. This makes the concrete easier to place during the construction process.
Cost optimisation: LD slag and BF slag are industrial waste products and are cheaper than manufactured sand and river sand. Also due to the pozzolanic properties of slag, cement content in concrete can be minimised. Overall concrete cost is reduced with improved performance.
Due to the vast growth of construction sectors, the demand for concrete has increased as a fine aggregate. Thus, it is essential to find suitable alternatives to sand such as slag materials.
It is observed that the combined use of LD slag and BF slag as fine aggregates leads to cohesive mix with desired workability and strength. The PC base chemical admixture was added to reduce the water content and maintain workability of the mix. Finally, it is concluded that slag can be used as an alternative of sand in concrete. As both types of slags are by-products from the steel industry, their long-term performance is vital, and further studies in this direction are still in progress.
ABOUT THE AUTHOR:
Nagesh Veeturi, Executive Director – Civil, KEC International is a seasoned professional having entrepreneurial and leadership skills with key focus on strategy and business transformation.
Sumata Sahu, DGM – Quality, KEC International has 32 years of rich experience in the construction industry mainly as QA/QC and project management professional.

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.
11th Indian Cement Review Conference
9th Indian Cement Review Awards
Concrete
Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home
Published
7 days agoon
March 19, 2025By
admin
- Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
- Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
- Sand Finish: A subtle grainy effect that provides a sophisticated touch.
- Monochrome interiors where walls serve as a sleek backdrop.
- High-gloss or matte-painted walls that need a seamless base.
- Spaces with minimal décor where the walls themselves make a statement.
- Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
- 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
- Asymmetrical Shapes: For a bold and avant-garde touch.
- These patterns work best in bedrooms, study areas, or accent walls in open spaces.
- Statement walls in living rooms and foyers.
- Elegant dining areas where a touch of opulence is desired.
- Boutique-style bedrooms with a rich, textured finish.
- Children’s rooms or play areas, creating a fun and dynamic atmosphere.
- Bedrooms with a soothing pastel gradient for a calming effect.
- Dining spaces where a bold color fade adds character.
- Luxurious master bedrooms and dressing areas.
- Accent walls in dining rooms or home bars.
- Commercial spaces like boutiques and salons.
- Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
- Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
- Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
- Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
- Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Concrete
Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka
Published
1 week agoon
March 19, 2025By
admin
- Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
- Increases capacity primarily to meet growing demand in Western India along with existing regions
Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.
The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.
Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”
About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units. Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Showcasing India’s Supply Chain Revolution

Highlighting the Future of Smart, Sustainable Infra

Driving Sustainability Through Innovation

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Showcasing India’s Supply Chain Revolution

Highlighting the Future of Smart, Sustainable Infra

Driving Sustainability Through Innovation

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home
