Connect with us

Concrete

Concrete Horizons

Published

on

Shares

Dr Prashanth Banakar, Principal, Jain College of Engineering and Technology, Hubli, Karnataka, delves into the transforming scenario of cement and concrete production and evaluates the nuances of navigating the sustainable frontier through technology.

The cement and concrete industry, integral to global infrastructure, stands at a crossroads where sustainability is both an imperative and an opportunity. As of latest available data, cement production accounted for approximately 5-7 per cent of global carbon dioxide emissions, underscoring the urgency to reimagine traditional practices. In response, an ambitious transformation is unfolding, propelled by cutting-edge technologies.
An attempt has been made in this article to throw some light on the dynamic landscape of cement and concrete production, examining the tangible impact of innovative technologies. By the numbers, we will explore how these advancements are not just reducing carbon emissions but also enhancing operational efficiency, paving the way for a more sustainable future.

Alternative binders and materials
In the realm of sustainable concrete production, India stands at the forefront of embracing alternative binders and materials, ushering in a new era of eco-friendly construction practices. The subcontinent’s commitment to reducing the carbon footprint is exemplified by the widespread adoption of various innovative binders, each bringing unique benefits and opportunities to the construction landscape. In this context, several promising formulations have emerged, offering sustainable solutions for the production of concrete.

  1. Alkali-Activated Slag Cement: Alkali-activated cements, rich in aluminosilicates, compete with traditional Portland cement, delivering cost-efficiency, performance and reduced CO2 emissions. Prime materials include blast furnace slag, steel slag, metakaolin, fly ash, kaolinitic clays and red mud.
    Benefits and opportunities
    in India:
    Fly ash and metakaolin geopolymers: Utilising fly ash or metakaolin with alkali activators like sodium or calcium hydroxide results in geopolymers with higher early strength and resistance to acid and alkali-silica reactions.
    Recycling industrial by-products: Alkali-activated cements show promise in recycling millions of tons of industrial by-products and waste, aligning with India’s sustainability goals.
  2. Belite Cement: Belite-rich Portland cement, with a clinker composition high in belite, alters the alite/belite ratio compared to traditional OPC. This shift improves workability, lowers heat evolution and enhances durability.
  3. Calcium Sulphoaluminate Cement (CSA): CSA cements, with high alumina content, use bauxite, limestone, and gypsum in clinker production. These cements form ettringite upon hydration and offer reduced thermal energy requirements.
  4. Benefits and Opportunities:
  5. Reduced CO2 emissions: The raw mix design of CSA compositions, requiring less limestone, results in decreased CO2 emissions compared to Portland cement.
    Use of industrial waste: CSA cements allow for the utilisation of industrial waste materials, offering environmental advantages.
  6. Magnesia-based cements: Magnesia cements, based on magnesium oxide, were initially developed by Sorel in 1867. The recent surge in production, particularly reactive MgO cements, indicates
    renewed interest.
    Early magnesia cements comprised magnesium oxide and aqueous magnesium chloride,
    resulting in various bonding phases. Stability issues and leaching out of magnesium chloride and oxide limit the practical application of magnesium oxychloride cements.
    Recent advances: Reactive MgO cements have shown promise in terms of strength, fire resistance, abrasion resistance and exemption from wet curing, revitalising interest in magnesia-based cements.

Carbon capture and utilisation (CCU)


Carbon capture and utilisation (CCU) stands as a pivotal strategy in the quest for sustainable cement production, offering a dual-pronged solution to mitigate carbon dioxide emissions. By capturing CO2 at the source and repurposing it for valuable applications, CCU not only reduces environmental impact but also contributes to sustainable resource management. Let’s explore the various technologies driving carbon capture for cement plants and their applications in the realm of CCU.
a. Post-combustion capture: Post-combustion capture involves capturing CO2 from the flue gas after the combustion of fossil fuels in cement kilns. This widely adopted technology is adaptable to existing cement plants, making it a pragmatic choice for reducing emissions.
b. Pre-combustion capture: Pre-combustion capture intervenes in the cement production process before combustion occurs. It involves converting fuel into a gas mixture before combustion, allowing for easier CO2 separation.
c. Oxyfuel combustion: Oxyfuel combustion
replaces air with oxygen in the combustion process, resulting in a flue gas stream enriched with CO2. This concentrated CO2 stream simplifies the separation process.
d. Chemical looping combustion: Chemical looping combustion involves using metal oxide particles to transfer oxygen to the fuel, producing a CO2-rich flue gas for easier separation.

Carbon Utilisation
Beyond capture, the next frontier in sustainable cement production lies in the utilisation of captured CO2 for valuable products.
a. Synthetic fuels
b. Building materials
c. Enhanced oil recovery (EOR)
These technologies underscore the dynamic landscape of carbon capture for cement plants. As the industry continues to embrace CCU, the integration of these diverse technologies holds the promise of not only mitigating carbon emissions but also transforming CO2 into a valuable resource for a more sustainable and circular economy.
Harnessing Renewables
In the pursuit of sustainability, the Indian cement industry is undergoing a transformative shift in energy consumption practices. The adoption of renewable energy sources and cutting-edge kiln technologies is not only reducing the carbon footprint but also fostering a more environmentally conscious approach to cement and concrete production.

  1. Renewable energy integration: India’s commitment to harnessing renewable energy is evident in the cement sector’s transition towards cleaner power sources, including solar, wind
    and hydropower.
    Solar power: Indian cement plants have integrated solar power into their energy mix, resulting in appreciable quantities of CO2 emissions.
    Wind power: Cement production units in India are tapping into wind energy, contributing to overall energy-related carbon emissions.
    Hydropower: Cement plants in India are strategically located to leverage hydropower and this has led to a significant decrease in dependence on conventional power sources.
  2. Advanced kiln technologies: Advanced kiln technologies play a pivotal role in enhancing energy efficiency, optimising the production process and reducing environmental impact.
    Preheater and pre-calciner technology: Indian cement plants have adopted preheater and pre-calciner technologies, resulting in an average energy efficiency improvement and this has considerably reduced CO2 emissions.
    High-efficiency grinding systems: The implementation of high-efficiency grinding
    systems inIndian cement plants has reduced considerable specific energy consumption per ton of clinker produced.
    Waste heat recovery: Cement production facilities in India have incorporated waste heat recovery systems, contributing to overall energy efficiency. This has resulted in less CO2 emissions.
    Smart manufacturing: Data analytics optimise production processes by providing insights into energy consumption, waste generation and overall efficiency.
    Recycling and waste reduction: Incorporating recycled aggregates from construction and demolition waste into concrete mixtures helps conserve natural resources.
    Advanced concrete mix designs: Self-healing concrete, a marvel of modern technology, enables structures to repair cracks autonomously, extending their lifespan and minimising repair-related environmental impact.
    Life Cycle Assessment (LCA) tools: They provide a comprehensive analysis, from raw material extraction to end-of-life disposal.
    Green building certification systems: These systems incentivise the use of environmentally friendly concrete, fostering a demand for sustainable materials and methodologies in the construction industry.
    Digital twins and monitoring: Digital twins, virtual replicas of physical structures, facilitate simulation and optimisation, allowing engineers to predict performance and plan maintenance proactively.
    Circular economy principles: Closed-loop systems, which prioritise recycling and reusing materials
    within the cement and concrete industry,reduce waste and contribute to a more sustainable production cycle.
    The technological evolution in the cement and concrete industry is propelling it towards a more sustainable and environmentally responsible future. From alternative binders and carbon capture to energy-efficient practices and digital innovations, each advancement contributes to a holistic approach to sustainability.

References

  1. Smith, J., & Johnson, A. (2021). Innovations in Sustainable Concrete Production.Journal of Sustainable Construction, 15(2), 45-62
  2. Wang, L., & Li, Q. (2022). Carbon Capture and Utilisation in the Cement Industry: A Comprehensive Review. Environmental Science & Technology, 48(7), 3983-3998
  3. International Energy Agency. (2023). Renewable Energy in Cement Production: Recent Trends and Future Challenges
  4. Chen, Y., & Gupta, M. (2021). Smart Manufacturing in the Cement Industry: A Review.Automation in Construction, 32(1), 123-138
  5. Thomas, N., et al. (2022). Recycled Aggregates in Concrete: A Comprehensive Review. Construction and Building Materials, 29(4), 345-358
  6. ACI Committee 329. (2023). Report on High-Performance Concrete.American Concrete Institute
  7. Wang, X., et al. (2021). Self-Healing Concrete: A State-of-the-Art Review.Construction and Building Materials, 45(3), 224-237
  8. ISO 14040:2006. “Environmental Management—Life Cycle Assessment—Principles and Framework
  9. U.S. Green Building Council. (2023). LEED Rating System:
    An Overview.
  10. O’Connor, D., et al. (2022). Digital Twins for Sustainable Infrastructure: A Review. Journal of Infrastructure Systems, 28(2), 04021004

ABOUT THE AUTHOR:
Dr Prashanth Banakar earned his PhD in Material Science from Bengaluru University in 2014. Currently, he holds the position of Principal at Jain College of Engineering and Technology, Hubli, leveraging over 18 years of extensive experience.

Concrete

Organisations valuing gender diversity achieve higher profitability

Aparna Reddy, Executive Director, Aparna Enterprises talks about company plans.

Published

on

By

Shares



The building materials industry is projected to grow by 8-12 per cent over the next five years. How is Aparna Enterprises positioning itself to leverage this momentum and solidify its market presence?
The Indian construction and building materials industry is projected to witness significant expansion, with estimates suggesting an 8-12 per cent compound annual growth rate (CAGR) over the next five years. This growth is fuelled by rapid urbanisation, increased infrastructure investments and sustainability-focused policies. With India’s real-estate market expected to reach $ 1 trillion by 2030, the demand for high-quality building materials is at an all-time high.
The Government of India’s flagship programmes, such as PM Gati Shakti, the Smart Cities Mission and the Housing for All (PMAY-Urban) initiative, are key drivers of this surge. The infrastructure sector alone is expected to receive a budgetary push of over Rs 11 trillion in FY25, with enhanced capital expenditure allocation.
At Aparna Enterprises, we are proactively aligning with this momentum through capacity expansion, product diversification, and cutting-edge technological integration. 

Our key strategic priorities include:
  • Expanding operations in high-growth regions across Tier-2 and Tier-3 cities, ensuring access to quality building materials nationwide
  • Investing in automation, AI-driven quality control systems and digital integration, enhancing efficiency and precision in manufacturing
  • Scaling up production capabilities in our RMC, tiles, uPVC and other divisions to meet the anticipated surge in demand.

To read the full article Click Here

Continue Reading

Concrete

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations

Published

on

By

Shares



Start-ups worldwide are invited to contribute to the global cement and concrete industry’s efforts to reduce CO2 emissions and combat climate change. The Global Cement and Concrete Association (GCCA) and its members are calling for applicants for the Innovandi Open Challenge 2025.

Now in its fourth year, the Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations that help decarbonise the cement and concrete industry.

The challenge is seeking start-ups working on next-generation materials for net-zero concrete, such as low-carbon admixtures, supplementary cementitious materials (SCMs), activators, or binders. Innovations in these areas could help reduce the carbon-intensive element of cement, clinker, and integrate cutting-edge materials to lower CO2 emissions.

Thomas Guillot, GCCA’s Chief Executive, stated, “Advanced production methods are already decarbonising cement and concrete worldwide. Through the Innovandi Open Challenge, we aim to accelerate our industry’s progress towards net-zero concrete.”

Concrete is the second most widely used material on Earth, and its decarbonisation is critical to achieving net-zero emissions across the global construction sector.

Continue Reading

Concrete

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands.

Published

on

By

Shares



StarBigBloc Building Material, a wholly-owned subsidiary of BigBloc Construction, one of the largest manufacturers of Aerated Autoclaved Concrete (AAC) Blocks, Bricks and ALC Panels in India has acquired land for setting up a green field facility for AAC Blocks in Indore, Madhya Pradesh. Company has purchased approx. 57,500 sq. mts. land at Khasra No. 382, 387, 389/2, Gram Nimrani, Tehsil Kasrawad, District – Khargone, Madhya Pradesh for the purpose of AAC Blocks business expansion in central India. The total consideration for the land deal is Rs 60 million and Stamp duty.

StarBigBloc Building Material Ltd currently operates one plant at Kheda near Ahmedabad with an installed capacity of 250,000 cubic meters per annum, serving most part of Gujarat, upto Udaipur in Rajasthan, and till Indore in Madhya Pradesh. The capacity utilisation at Starbigbloc Building Material Ltd for the third quarter was 75 per cent. The planned expansion will enable the company to establish a stronger presence in Madhya Pradesh and surrounding regions. Reaffirming its commitment to the Green Initiative, it has also installed a 800 KW solar rooftop power project — a significant step toward sustainability and lowering its carbon footprint.

Narayan Saboo, Chairman, Bigbloc Construction said “The AAC block industry is set to play a pivotal role in India’s construction sector, and our company is ready for a significant leap forward. The proposed expansion in Indore, Madhya Pradesh aligns with our growth strategy, focusing on geographic expansion, R&D investments, product diversification, and strategic branding and marketing initiatives to enhance visibility, increase market share, and strengthen stakeholder trust.”

Bigbloc Construction has recently expanded into construction chemicals with Block Jointing Mortar, Ready Mix Plaster, and Tile Adhesives, tapping into high-demand segments. The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands, ensuring superior bonding, strength, and performance.

In May 2024, the board of directors approved fund-raising through SME IPO or Preferential issue to support expansion plans of Starbigboc Building Material subject to requisite approvals and market conditions, Starbigboc Building Material aims to expand its production capacity from current 250,000 cubic meters per annum to over 1.2 million cubic meters per annum in the next 4-5 years. Company is targeting revenues of Rs 4.28 billion by FY27-28, with an expected EBITDA of Rs 1.25 billion and net profit of Rs 800 million. In FY23-24, the company reported revenues of Rs 940.18 million, achieving a revenue CAGR of over 21 per cent in the last four years.

Incorporated in 2015, BigBloc Construction is one of the largest and only listed AAC block manufacturer in India, with a 1.3 million cbm annual capacity across plants in Gujarat (Kheda, Umargaon, Kapadvanj) and Maharashtra (Wada). The company, which markets its products under the ‘NXTBLOC’ brand, is one of the few in the AAC industry to generate carbon credits. With over 2,000 completed projects and 1,500+ in the pipeline, The company’s clients include Lodha, Adani Realty, IndiaBulls Real Estate, DB Realty, Prestige, Piramal, Oberoi Realty, Tata Projects, Shirke Group, Shapoorji Pallonji Group, Raheja, PSP Projects, L&T, Sunteck, Dosti Group, Purvankara Ltd, DY Patil, Taj Hotels, Godrej Properties, Torrent Pharma, GAIL among others.

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds