Connect with us

Concrete

Sustainable processes are crucial for climate change

Published

on

Shares

Arpan DilipKumar Parekh, Technical Head – Vice-President, JK Cement, discusses the intricate interplay of economic considerations and environmental regulations in the methods of pyroprocessing.

Tell us about the process of pyroprocessing and how does it differ with various blends of cement raw materials?
Pyroprocessing is a term used in the cement manufacturing industry to describe the high-temperature processes involved in converting raw materials into clinker, the intermediate product that is then ground into cement. The primary raw materials used in cement manufacturing are limestone, clay, silica, and iron ore. The pyroprocessing stage typically involves a series of chemical and physical transformations that take place in a kiln.
The pyroprocessing of cement can be broadly divided into the following stages:
Drying and Preheating
: Raw materials, usually limestone and clay, are quarried and then crushed to small sizes. The crushed raw materials are then dried in kiln preheaters to remove moisture, and preheated to temperatures of around 800 to 900 degrees Celsius. This helps in reducing the energy required for subsequent stages.
Calcination: In this stage, the preheated raw materials are subjected to high temperatures (around 1400 to 1500 degrees Celsius) in the kiln. The key reaction during calcination is the decomposition of calcium carbonate (limestone) into calcium oxide (quicklime) and carbon dioxide.
Clinker Formation: The partially calcined material undergoes a series of complex chemical reactions to form clinker. Alumina and iron oxide from the raw materials combine with silica to form liquid phases, which then react with lime to form
clinker nodules.
Cooling: The clinker is cooled rapidly to minimise the formation of undesirable crystalline phases. The cooling process is critical to the quality of the final product, as it influences the mineralogical composition and, consequently, the cement properties.
Grinding: The cooled clinker is ground into a fine powder along with gypsum to regulate the setting time of the cement. The process of pyroprocessing can be influenced by the types and proportions of raw materials used in cement manufacturing. The blends of raw materials can vary based on factors like geographical location, availability of resources, and desired cement properties.
Limestone Quality: The composition of limestone affects the amount of heat required for the calcination process. Higher limestone content may require additional energy in the kiln.
Clay Content: The clay content influences the reactivity and the formation of liquid phases during clinkerisation. It also affects the temperature at which clinker formation occurs.
Silica and Alumina Content: These components influence the liquid phase formation and, consequently, the properties of clinker.
The process parameters and kiln design may be adjusted based on the raw material blend to optimise the efficiency and quality of the pyroprocessing stage. Therefore, the variation in raw material blends can lead to differences in energy consumption, emissions, and the properties of the final cement product. It is important for cement manufacturers to carefully control and monitor these parameters to ensure consistent and high-quality cement production.

What is the role of technology in the process of pyroprocessing?
Technology plays a crucial role in pyroprocessing within the cement manufacturing industry. Advancements in technology have led to improvements in efficiency, energy conservation, environmental sustainability, and overall process control. Here are some key aspects of the role of technology in pyroprocessing:
Kiln design and optimisation: Modern technology allows for the design and optimisation of kilns to enhance heat transfer, minimise heat losses, and improve overall energy efficiency. Computational fluid dynamics (CFD) simulations and modelling are employed to optimise the design of kiln systems.
Process automation and control systems: Advanced control systems, such as distributed control systems (DCS) and programmable logic controllers (PLC), enable precise control and automation of the pyroprocessing parameters. This includes temperature control, fuel and air ratios, and material feed rates.
Sensors and instrumentation: High-tech sensors and instrumentation are used to monitor various aspects of the pyroprocessing stage, including temperature profiles, gas compositions, and pressure conditions. This real-time data is crucial for process optimisation and control.
Alternative fuels and raw materials: Technology has facilitated the incorporation of alternative fuels and raw materials in the pyroprocessing stage. This includes the use of alternative fuels like biomass, waste-derived fuels, and alternative raw materials, which can contribute to sustainability and reduce the environmental impact of cement production.
Waste heat recovery: Advanced technologies enable the capture and utilisation of waste heat generated during pyroprocessing. This recovered heat can be used for power generation or for other processes like drying of limestone, coal or slag within the cement plant, contributing to increased energy efficiency.
Clinker cooling technology: Efficient clinker cooling is essential for the quality of the final product. Advanced cooling technologies, such as grate coolers and air quenching, are employed to achieve rapid and controlled cooling, minimising the formation of undesirable clinker phases.
Data analytics and machine learning: Data analytics and machine learning algorithms are increasingly being applied to analyse large sets of process data. The application of condition monitoring practices is helping in predicting the equipment performance and failure modes. These technologies can identify patterns, predict equipment failures, and suggest optimisation strategies, leading to improved overall efficiency and reduced downtime. Thermography has taken the entry and has expanded the application supporting the predictive maintenance.
Environmental control and emission reduction: Technology plays a vital role in implementing environmental control measures and reducing emissions from pyroprocessing. This includes the use of advanced filters, scrubbers, and monitoring systems to comply with environmental regulations and minimise the environmental impact of cement production.
Simulation and modelling: Computer-aided simulations and models are utilised to simulate and analyse the behaviour of the pyroprocessing system under different conditions. This helps in understanding and optimising the complex interactions within the kiln.
Automated sampling process and testing: Deployment of systems having collection of raw material, in process material and finished products enables reduction in manual intervention and enhanced reliability of results which in turn help in process stabilisation and optimisation. Usage of XRF and XRD in testing helps in getting more accurate results.
The integration of these technological advancements in pyroprocessing contributes to increased energy efficiency, reduced environmental impact, and improved product quality in the cement manufacturing industry. Continuous research and development efforts in this field aim to further enhance the sustainability and competitiveness of cement production.

How has the adaptation to newer technology in pyroprocessing impacted production?
Some of the key positive effects include:
Increased energy efficiency: Advanced technologies, such as preheating and pre-calcination systems, improved kiln designs and waste heat recovery systems, have led to increased energy efficiency in pyroprocessing. This results in reduced fuel consumption, reduced electrical energy and lower greenhouse gas emissions per unit of clinker produced.
Optimised process control: Modern control systems, sensors, and automation technologies allow for precise and real-time control of various parameters in the pyroprocessing stage. This optimisation leads to better control of temperature profiles, material flows, and gas compositions, contributing to consistent and high-quality clinker production.
Alternative fuels and raw materials: The use of advanced technology has facilitated the incorporation of alternative fuels and raw materials. This not only helps in reducing the environmental impact but also provides economic benefits by utilising waste materials as energy sources or raw materials.
Reduction in environmental impact: Advanced filtration systems, improved dust collection technologies, and better environmental control measures have been implemented to minimise dust emissions and other pollutants along with the usage control of water and preservation. This results in a reduced environmental impact, meeting stringent environmental regulations and enhancing the sustainability of cement production.
Waste heat recovery: The integration of waste heat recovery systems in pyro-processing contributes to increased overall plant efficiency. The recovered heat can be used for power generation, further reducing the reliance on external energy sources, and improving the overall energy balance of the cement plant.
Clinker cooling technologies: Advanced clinker cooling technologies help achieve optimal cooling rates, reducing the formation of undesirable clinker phases. This positively impacts the quality of the final product and allows for better control over cement properties.
Data analytics and predictive maintenance: The application of data analytics and machine learning algorithms has improved predictive maintenance strategies. This helps in identifying potential equipment failures before they occur, minimising downtime, and optimising maintenance schedules.
Process modelling and simulation: Computer-aided modelling and simulation tools enable a better understanding of the complex interactions within the pyro-processing system. This knowledge allows for the testing of various scenarios and the optimisation of process parameters without disrupting production.
Product quality and consistency: The integration of advanced technologies ensures better control over the entire production process, leading to improved product quality and consistency. This is essential for meeting the standards and requirements of end-users.
Economic benefits: While initial investments may be required for implementing new technologies, the long-term economic benefits, including reduced operating costs, enhanced energy efficiency, and compliance with environmental regulations, contribute to the overall economic sustainability of production.
The adaptation of newer technology in pyro-processing has positively impacted the cement making process by improving energy in terms of electrical and thermal efficiency, environmental performance, product quality and overall operational efficiency. These advancements are crucial for the cement industry to meet the demands of a growing global population while minimising its carbon footprint.

What is the impact of using alternative fuels as sources of energy on pyroprocessing?
Pyroprocessing is a group of high-temperature processes used to transform raw materials into useful products, often involving the use of heat to drive chemical reactions. The impact of using alternative fuels as sources of energy on pyro-processing can vary depending on the specific alternative fuels and the type of pyroprocessing involved, such as in cement manufacturing or metallurgical processes. Here are some general considerations:
Energy efficiency: Alternative fuels, such as biomass, waste-derived fuels, or certain types of industrial by-products, may have different combustion characteristics compared to traditional fossil fuels. The use of alternative fuels can impact the overall energy efficiency of pyroprocessing. For instance, some alternative fuels may have lower calorific value or different combustion kinetics, affecting the heat transfer and temperature profiles within the pyro-processing system. Depending upon the contents like moisture, chlorides, heavy metals etc. the pyro-process may face difference in operation.
Emissions and environmental impact: The choice of alternative fuels can influence the emissions profile of the pyro-processing facility. For example, using biomass or waste-derived fuels may result in lower carbon dioxide emissions compared to traditional fossil fuels. However, the combustion of some alternative fuels might produce different types of emissions, such as particulate matter or certain
trace gases, which could impact air quality and environmental compliance.
Raw material chemistry: The introduction of alternative fuels can alter the chemical composition of the feedstock entering the pyro-processing system. This may affect the overall chemical reactions and the quality of the final product. Impurities or different ash compositions from alternative fuels may require adjustments in the pyro-processing parameters to maintain product quality and process stability.
Operational challenges: The use of alternative fuels may pose challenges related to handling, transportation, and storage. Different combustion characteristics or impurities in alternative fuels may require modifications to the pyro-processing equipment to ensure optimal performance. specialised equipment, such as pre-processing units or additional safety measures, may be needed when integrating alternative fuels into existing pyro-processing systems.
Regulatory compliance: The regulatory environment and standards for emissions control may influence the choice and implementation of alternative fuels in pyro-processing. Facilities may need to adhere to specific regulations governing the use of certain types of alternative fuels.
The impact of using alternative fuels in pyro-processing is multifaceted and depends on
the specific characteristics of the alternative fuels and the details of the pyro-processing system. Careful consideration of technical, environmental and regulatory factors is essential when implementing alternative fuels to ensure efficient and sustainable pyro-processing operations.

How are you minimising the environmental impact of CO2 and N2O emissions?
Here are some industry-specific strategies:
Alternative fuels and raw materials: Substituting traditional fossil fuels with alternative fuels, such as biomass, waste-derived fuels, or renewable sources, can reduce CO2 emissions in industrial processes like cement manufacturing. Using alternative raw materials that have lower carbon content can also contribute to emission reduction.
Energy efficiency in pyroprocessing: Improving the energy efficiency of pyro-processing systems can reduce the overall energy consumption and, consequently, the associated CO2 emissions. Implementing advanced technologies, such as high-efficiency kilns, highly efficient clinker coolers and waste heat recovery systems, can optimise energy usage.
Process optimisation: Conducting a thorough analysis of pyro processing parameters and optimising them for maximum efficiency can lead to lower energy consumption and reduced emissions. Incorporating advanced process control systems and sensors can help in real-time monitoring and adjustments.
Nitrous oxide abatement: Implementing technologies and practices that specifically target the reduction of nitrous oxide emissions from industrial processes, such as the use of low-nitrogen oxide burners, can be beneficial.
Life cycle assessment: Conducting a comprehensive life cycle assessment of industrial processes helps identify the stages with the highest environmental impact. This allows for targeted interventions to reduce emissions throughout the entire lifecycle.
Collaboration and knowledge sharing: Encouraging collaboration within the industry and sharing best practices can accelerate the adoption of sustainable technologies and strategies.
Employee training and engagement: Training employees on sustainable practices and engaging them in emission reduction initiatives can create a culture of environmental responsibility within the organisation.
It is important for us to adopt a combination of these strategies and continually assess and update the practices to align with evolving environmental standards and expectations. Sustainable processes are crucial for climate change and for minimising the overall impact on the environment.

Tell us about the efforts taken by your organisation.
Pyroprocessing can play a significant role in supporting a circular economy by promoting the sustainable use of fuels and raw materials. The circular economy is an economic model that emphasises the reduction, reuse, recycling, and recovery of materials to minimise waste and environmental impact.
At JK Cement we are focusing on maximising the usage of alternative fuels in terms of biomass, organic wastes, RDFs and MSW. A good number of investments is done and being done to maximise the usage to the best of the industrial standards. This practice has helped to divert materials that would otherwise end up in landfills, contributing to a
more circular approach by converting waste into a valuable resource.
Usage of fly ash, pond ash, chemical gypsums and a variety of industrial wastes to reduce clinker factors in various blended cements is a prime focus area in our organisation.
The heat generated during pyroprocessing is being utilised for power generation for creating a more sustainable energy source. A very high focus is put on maximisation of power generation through waste heat recovery systems and maximising the generation per ton of clinker by carrying out various corrections and modifications.
By integrating these practices, JK Cement contributes to the principles of a circular economy by reducing waste, promoting resource efficiency and creating closed-loop systems that minimise environmental impact while supporting sustainable industrial processes.

What is the frequency of audits?
The frequency of audits for pyroprocessing operations can vary based on factors such as industry standards, regulatory requirements and individual company policies. In general, audits for pyro-processing operations are conducted periodically to ensure compliance with safety, environmental and operational standards. The specific frequency of audits may be outlined in regulatory guidelines or industry best practices.
Companies often establish their own internal audit schedules to monitor and assess the performance of pyroprocessing facilities. To obtain accurate and up-to-date information on the frequency of audits for pyro-processing operations, it is recommended to consult relevant industry standards, regulatory agencies, or the specific policies and procedures of the organisation in question. Keep in mind that regulations and practices can vary by region and industry sector.

Tell us about the major challenges in a cement plant with pyro-processing.
Cement manufacturing with pyroprocessing involves high-temperature processes for the transformation of raw materials into clinker, which is the intermediate product used to produce cement. While pyroprocessing is essential for cement production, it comes with several challenges. Here are some major challenges faced by cement plants with pyroprocessing.
Pyroprocessing in cement plants requires significant amounts of energy, primarily for the heating of raw materials and clinker production. Managing and optimising the energy consumption to improve efficiency is an ongoing challenge. The combustion of fuels and chemical transformation of the raw material in the cement kiln result in carbon, sulphur, nitrogen oxides emission. Addressing and reducing these emissions is a key challenge for cement industries nowadays.
Usage of a variety of alternative fuels in comparison to regular fossil fuels with a lot of regularities with reference to control over usage, maintaining the quality, regulating the flow etc. Without these controls it becomes difficult to maintain the clinker / cement quality, environmental norms, product output, etc. The easy combustible nature of alternative fuels
put additional challenges for fire proof storage and handling.
Usage of alternative raw materials is also an important challenge being faced by cement manufacturers. This creates fluctuations in clinker quality and in turn pose a challenge in maintaining the required standards of cement quality.
Irregular AFRs are creating uncontrolled temperature and abrasive conditions in cement kilns and other equipment. Balancing the need for regular maintenance to prevent down time while maximising operation efficiency is a crucial challenge.
Cement manufacturers face market competition and economic pressures, which can impact production decisions and investment in new projects and new technologies. Balancing economic considerations with environmental and regulatory requirements is a complex challenge. The cement industry must invest continually in research and development to adapt innovative technologies that improve efficiency, reduce emission and overall sustainability. Adapting to evolving technological advancement is crucial for long term competitiveness. Many cement plants are actively working on improving their processes to reduce environmental impact and enhance overall efficiency.

  • Kanika Mathur

Concrete

The primary high-power applications are fans and mills

Published

on

By

Shares



Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.

As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.

How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.

What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.

Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.

Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.

How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.

What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.

Continue Reading

Concrete

We conduct regular internal energy audits

Published

on

By

Shares



Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.

In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.

How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.

What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.

How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.

Continue Reading

Concrete

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

The airport is set to become Asia’s largest air connectivity hub.

Published

on

By

Shares



Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.

The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.

“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.

Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.

This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds