Connect with us

Concrete

Pyroprocessing: The Heart of the Matter

Published

on

Shares

Design, technology, innovation and costs are the determining factors for the future of pyroprocessing in cement production.

At the heart of the Portland Cement manufacturing process is the pyroprocessing system. This system transforms the raw mix into clinkers, which are grey, glass-hard, spherically shaped nodules that range from 0.32 to 5.1 (cm) or (0.125 to 2.0 inches [in.]) in diametre. The chemical reactions and physical processes that constitute the transformation are quite complex, but they can be viewed conceptually as sequential events starting with:

  • Calcination of the calcium carbonate (CaCO3) to calcium oxide (CaO);
  • Reaction of CaO with silica to form dicalcium silicate;
  • Reaction of CaO with the aluminum and iron-bearing constituents to form the liquid phase;
  • Formation of the clinker nodules;
  • Evaporation of volatile constituents (e. g. sodium, potassium, chlorides and sulphates);
  • Reaction of excess CaO with dicalcium silicate to form tricalcium silicate.


There are three distinct temperature phases as well in pyroprocessing:
Dehydration, as the material temperature increases from 100°C to approximately 430°C (800°F) to form oxides of silicon, aluminum, and iron; Calcination, during which carbon dioxide (CO2) is evolved, between 900°C (1650°F) and 982°C (1800°F), to form CaO; and Reaction of the oxides in the burning zone of the rotary kiln, to form cement clinker at temperatures of approximately 1510°C (2750°F).
These processes in its entirety transforms the limestone molecular structure into clinker and the process involves high temperature heating of the raw mix needing energy (3250 megajoules per tonne) and the emissions include a slew of gases, mostly CO2 and NOx, that is 800 kg per tonne of cement produced; thus, the focus has been to reduce carbon intensity, increase usage of alternate fuels stemming from wastes and improve efficiency simultaneously. The direction in which technology has evolved would be the focus of this short note.

Preheather Process
Dry process pyroprocessing systems have been improved in thermal efficiency and productive capacity through the addition of one or more cyclone-type preheater vessels in the gas stream exiting the rotary kiln. This system is called the preheater process. The vessels are arranged vertically, in series, and are supported by a structure known as the preheater tower. Hot exhaust gases from the rotary kiln pass counter currently through the downward-moving raw materials in the preheater vessels. Compared to the simple rotary kiln, the heat transfer rate is significantly increased, the degree of heat utilisation is greater, and the process time is markedly reduced by the intimate contact of the solid particles with the hot gases. The improved heat transfer allows the length of the rotary kiln to be reduced. The hot gases from the preheater tower are often used as a source of heat for drying raw materials in the raw mill. Because the catch from the mechanical collectors, fabric filters, and/or electrostatic precipitators (ESP) that follow the raw mill is returned to the process, these devices are considered to be production machines as well as pollution control devices.


Additional thermal efficiencies and productivity gains have been achieved by diverting some fuel to a calciner vessel at the base of the preheater tower. This system is called the preheater/precalciner process. While a substantial amount of fuel is used in the precalciner, at least 40 per cent of the thermal energy is required in the rotary kiln. The amount of fuel that is introduced to the calciner is determined by the availability and source of the oxygen for combustion in the calciner. Calciner systems sometimes use lower-quality fuels (e. g. less-volatile matter) as a means of improving process economics.
Preheater and precalciner kiln systems often have an alkali bypass system between the feed end of the rotary kiln and the preheater tower to remove the undesirable volatile constituents. Otherwise, the volatile constituents condense in the preheater tower and subsequently recirculate to the kiln. Build-up of these condensed materials can restrict process and gas flows. The alkali content of Portland cement is often limited by product specifications because excessive alkali metals (i. e. sodium and potassium) can cause deleterious reactions in concrete. In a bypass system, a portion of the kiln exit gas stream is withdrawn and quickly cooled by air or water to condense the volatile constituents to fine particles. The solid particles, containing the undesirable volatile constituents, are removed from the
gas stream and thus the process by fabric filters and ESPs.

Clinker Cooler
The last component of the pyroprocessing system is the clinker cooler. This process recoups up to 30 per cent of the heat input to the kiln system, locks in desirable product qualities by freezing mineralogy, and makes it possible to handle the cooled clinker with conventional conveying equipment. The more common types of clinker coolers are (1) reciprocating grate, (2) planetary, and (3) rotary. In these coolers, the clinker is cooled from about 1100°C to 93°C (2000°F to 200°F) by ambient air that passes through the clinker and into the rotary kiln for use as combustion air. However, in the reciprocating grate cooler, lower clinker discharge temperatures are achieved by passing an additional quantity of air through the clinker. Because this additional air cannot be utilised in the kiln for efficient combustion, it is vented to the atmosphere, used for drying coal or raw materials, or used as a combustion air source for the pre-calciner.

Optimised kiln burners, staged combustion calciners, SNCR and SCR-systems are the prevalent solutions available to
satisfy set emission limits.


The direction and focus so far in pyroprocessing, including the cooler, has been to increase thermal efficiency, followed by emission control to achieve the desired level as stipulated by regulatory authorities. On this second aspect optimised kiln burners, staged combustion calciners, and SNCR- as well as SCR-systems are the prevalent solutions available to satisfy set emission limits. On the former mostly technologies on offer must optimise alternate fuels, raw mill mix feed and the efficiency factors as a combined objective function, where cost economics have always played the most dominant role.
Cost economics starts with the dynamic prices of all fuel types and their landed cost converted to Rs/Kcal, which creates some parity but the combination in which this can be optimised has many other dynamic factors that include chemistry and thermal dynamics together with the quality attributes.
Most cement companies have remained straddled between the cost economics and the emission goals and until recently had remained hinged to the goals of cost economics that did not preclude the externalities involved or the abatement costs. The procurement cost of all types of fuel for the pyroprocessing also did not factor in the internal price of carbon.
Thus, pyroprocessing economics could be changing very dramatically once the future pricing dynamics start to include all of these costs; the design of the future pyroprocessing system could be ordained on a very different objective function that must optimise a number of factors, not necessarily the ones that are on the top of the agenda.

Procyon Mukherjee

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares



Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Concrete

Vedanta gets CCI Approval for Rs 17,000 MnJaiprakash buyout

Acquisition marks Vedanta’s expansion into cement, real estate, and infra

Published

on

By

Shares



Vedanta Limited has received approval from the Competition Commission of India (CCI) to acquire Jaiprakash Associates Limited (JAL) for approximately Rs 17,000 million under the Insolvency and Bankruptcy Code (IBC) process. The move marks Vedanta’s strategic expansion beyond its core mining and metals portfolio into cement, real estate, and infrastructure sectors.

Once the flagship of the Jaypee Group, JAL has faced severe financial distress with creditors’ claims exceeding Rs 59,000 million. Vedanta emerged as the preferred bidder in a competitive auction, outbidding the Adani Group with an overall offer of Rs 17,000 million, equivalent to Rs 12,505 million in net present value terms. The payment structure involves an upfront settlement of around Rs 3,800 million, followed by annual instalments of Rs 2,500–3,000 million over five years.

The National Asset Reconstruction Company Limited (NARCL), which acquired the group’s stressed loans from a State Bank of India-led consortium, now leads the creditor committee. Lenders are expected to take a haircut of around 71 per cent based on Vedanta’s offer. Despite approvals for other bidders, Vedanta’s proposal stood out as the most viable resolution plan, paving the way for the company’s diversification into new business verticals.

Continue Reading

Trending News