Connect with us

Concrete

Looking at a Sustainable Future

Published

on

Shares

With the infrastructure and housing sectors in India growing exponentially, the demand for precast concrete has given rise to new innovations, automation and improved technology. As the cement industry marches towards its net zero targets, ICR delves deeper into the eco-sustainable benefits of precast concrete.

Precast concrete by definition is a form of concrete that is prepared, cased and cured off-site, usually in a controlled factory environment, using reusable moulds. Precast concrete elements can be joined to other elements to form a complete structure. Typically used for structural components like wall panels, beams, columns, floors, staircases, pipes, tunnels, etc., in infrastructure projects, precast concrete is an economical and practical option used by builders. Most precast products are cast in a factory using a wet-cast method, but others are cast on site—such as tilt-up panels.

‘Review of Precast Concrete Technology in India,’ a research report by the International Journal of Engineering Research and Technology, states that the rapid growth of population in Indian urban regions is leading towards the huge demand for basic amenities and resources like housing, infrastructure, resources, etc. The government of India (GOI) intends to provide housing to every citizen by 2022. To achieve the target, the Indian construction industry needs a method of rapid construction technology like precast concrete. Various technical studies show that the application of precast technology is only approximately 2 per cent of the total Indian construction industry. Precast concrete is used extensively in building structures, for e.g., structural frames, floors and roofs, claddings etc. Many buildings now include a mixture of both construction techniques, sometimes incorporating structural steelwork, in-situ concrete and precast concrete elements.

According to a research report by Market and Market, the global precast concrete market size is projected to grow from US$ 144.6 billion in 2022 to US$ 198.9 billion by 2027, at a CAGR of 6.6 per cent from 2022 to 2027. The precast concrete market is expected to witness significant growth in the future as concrete is a natural building material, which is 100 per cent recyclable and in combination with steel, it is a safe, sustainable and earthquake-resistant material with little wear and tear.

The precast structures of concrete derive its name from its off-site production. It is usually constructed in multiple stages to ensure its strength, durability and usefulness on-site. Most precast products are cast in a factory using a wet-cast method, but others are cast on site—such as tilt-up panels. Depending on the scope of the project, concrete is prestressed with steel or cable reinforcement to increase overall strength of the structure.

Use and Type of Precast

As the technology of construction is increasing day by day, precast techniques are gaining popularity as they considerably help reduce the expenses of the construction process. Concrete is the key component of precast structures as it contributes to the transformation of structural entities with a high success rate. It is extensively used in the structural entities like buildings, floors, roofs, claddings, structural frames etc. There are two main types of precast building frames – Structural Frame and Cross- Wall Frame.

These have been proven to be successful as a building material because they help with fast construction and provide economic and affordable advantage to the makers of the structure. These come with quality controls, standardised volume and measurements and have a good strength to weight ratio.

Every project requires specific types of precast that helps in its successful completion. A precast slab comes in many types, namely, hollow core units, double -tee units, solid core slabs and bi axial voided slabs which ultimately help to gain more advantages. They are widely preferred and used in construction activities as they suit most types of architectures and adapt to the requirements of the builders.

A hollow core slab provides maximum structural efficiency by reducing the dead weight. Double-tee units are primarily designed for flooring purposes and lighter in weight. At the same time, the depth of units may vary depending on the span. A solid core slab is a prefabricated one that looks similar to a solid slab, which can help to meet essential needs in the construction process. The biaxial voided slabs are the latest ones that are more efficient than traditional floor structure.

In precast beam and column, the beam is typically used as a ledge for other precast flooring types, which ultimately give ways for obtaining optimal results while the precast column is typically used to support a beam and the sizes and shapes can vary with a building project. Precast columns are usually rectangular vertical structures while beams could be of various types like tee-beams, beamshells, L-beams, U-beams, and rectangular beams.

For the stability of a frame structure that can carry vertical load, precast walls come as the perfect solution. Most construction organisations and builders use precast walls and floor slabs to make a complete structure which is suitable for their building’s stability and enhances the structural integrity and aesthetics as well as is cost effective while ensuring optimal results. Curtain walls, load-bearing wall units, shear walls, and form work for cast-in-place concrete are the four types of precast walls available for the buildings, allowing them to maintain a better environment. The precast sandwich wall covers insulation properties to a building structure thereby helping to get more protection during extreme weather conditions. It consists of two reinforced concrete shells made from different types of materials.

Besides the core structures of any building, precast concrete structures are available for balconies and staircases as well. There are two types of precast products. Those shaped in a single way or way and are used repeatedly are standard products such as beams, decks, and railroad ties etc, while those that are designed to suit specific structures and places are specialty structures.

There are some decorative applications precast concrete as well in structures like countertops, sinks, bathtubs, planters, garden furniture, window sills, accent strips, statues and many more.

Materials for Precast Concrete

Precast Concrete has cement as the key raw material. The kind of cement used to make the concrete is what defines its properties and quality.

Cement should comply with the requirements of IS 456;2000, for gaining satisfactory performance in a structure. The Ordinary Portland Cements (OPC) 43 grade (IS:8112) and 53 (IS:12269) are normally used in precast concrete construction for general purpose. Portland Pozzolana Cement [IS 1481] and Portland Slag Cement [IS 455] are preferred in making precast concrete for structures in polluted environments.

High silica cement is advised to be avoided as it suffers reversion and loses a large portion of its strength in warm and humid conditions.

Supplementary cementitious materials (SCMs) like fly ash, ground granulated blast- furnace slag, metakaolin and silica fume enhance the results of ordinary portland cement (OPC) hydration reactions in concrete and are either incorporated into concrete mixes as a partial replacement for portland cement or blended into the cement during manufacturing. They should comply with the requirements of the appropriate parts of IS;3812 for fly ash, IS;12089 for GGBS and IS;15388 for silica fumes. The benefits of Supplementary cementitious materials include reduced cost, improved workability, lower heat of hydration, improved durability and chemical resistance.

Process of Casting Concrete

The requirement of precast differs from project to project. Thus, it becomes important what type of structure is suitable for the project and it is then prepared in stages.

Engineering of the precast is the first stage of making the required structure for any project. Engineers use the latest design tools and softwares to curate detailed drawings of the required structure. Once approved, these drawings are then used as a blueprint for the rebar cage assembly and the entire precast project. These designs made by able engineers have to be approved, post which moulds are created and then concrete is placed in them.

If the precast structure is required to be reinforced with steel, the first step of the process is to cut and bend the steel to meet the required measurements of the mould or the structure. The rebars must be cut with utmost precision to attain the desired dimensions. Once cut into different shapes and sizes, the bars are then assembled and tied together to form a reinforcement cage for the precast structure.

The moulds in the are made ready with measurements and drawings shared by engineers. These must be applied with form release agents. These agents are those that help the final structure release from the mould with ease and without damaging either surface. They also help maintain quality and aesthetic finish to the concrete. The moulds for concrete or the forms should be prepared by securing embedded items or openings cutouts before the release agent is applied on all surfaces.

The cage is then placed in the form with the help of a crane. This process requires precision and must be followed by a pre-pour inspection and quality check that allows the factory workers to understand any damage to the form or adjustments required before concrete is placed in the mould form.

Precast factories place concrete in moulds by two methods. By using premix concrete that comes ready made as per the required quality and is mixed with water and put in the structure. The other method is by mixing raw materials like cement, sand, coarse aggregates, and chemical mixtures in the factory to make the concrete. The raw material quality checks and mixture formulations are done in laboratories in the premises of the factory. The mixed concrete also goes through a spread test in the laboratories that verify if the resulting mix is the right flow without any segregation. Concrete is then placed in the mould.

This has to be done carefully to ensure no air is trapped in the mould. Once the pouring is complete, the top of the mould is screened and the specific finish is applied.

“Precast casting concrete elements are manufactured with the required steel reinforcement either in formwork, moulds or on steel plates with side shuttering etc. The concrete cast is made at a different location and is then transported to the site. Precast elements are made of minimum M20 to M50 grade of concrete says Vijay Shah, Director, India Precast. “Prestressed concrete is a combination of high strength concrete and tensioned steel strands. This combination makes a strong structural unit that is useful in building roof slabs, bridge girders etc.

Reinforced concrete is manufactured from a combination of high strength concrete and normal reinforcement bars,” he adds.

Curing of the concrete in its mould is done in controlled environments in the factory premises. This allows the mix to cure and reach its full strength before it is transported to the building site. A quality check is performed to check if the product has achieved its full strength and then the process of stripping is given a go-ahead.

To strip the precast concrete from its mould, the outer jacket of the mould or form is removed. The inner core is then carefully collapsed for lifting equipment to attach to the structure and pull it out of the mould. The casted concrete is then removed and cleaned for its post pour inspection.

A quality check inspector does a thorough postpour inspection of the casted concrete to ensure all the design elements and dimensional specifications provided by the user of the structure are intact. These quality inspections also look into any visual defects visible on the surface. Post the clearance, the precast concrete is then sent over to the site for use.

Advanta ges of Precast Concrete

Some of the benefits of using precast concrete in construction projects.

Control on quality and production is achieved when precast concrete comes into play. Before the precast is sent over to the site for use, it goes through quality checks and only the approved casts in design and technicalities are used in construction. Since precast is manufactured in a controlled casting environment it is easier to control the mix, placement, and curing. Similarly, there is controlled production and reduced wastage the quantity of production is determined.

Reduction of overall construction time is an advantage that is achieved by working with precast structures. Since the structures are made at a different location or factory, it gives the construction workers time to work on other aspects of the building and construction process. Saving time means saving money.

The use of precast concrete leads to elimination of clutter at the construction site and enables ease of installation, thus enhancing the security at the site. This also reduces the need of a lot of people for the process of installation.

Precast concrete enhances durability as it lasts long without the need of a lot of maintenance. High density precast concrete is usually made using tested components that reduce corrosion or moisture.

Precast Promotes Sustaina bility

The precast structures are manufactured using environmentally friendly procedures, making them sustainable in short term and long term. Their casting in controlled environments and in measured quantities and with quality checks considerably reduces the waste that takes place when concrete is mixed on-site.

Nikita George, Director – Operations, APCO Concrete Blocks and Allied Products, says, “The blocks that we manufacture follow the highest quality parameters that give a very long life span. When used in building, the age of these blocks can reach upto 100 years. The blocks used in these buildings at the time of demolition can be re-crushed and used to manufacture the same product again. And since concrete blocks are one of the strongest products available in the market, the damages are virtually zero on site.”

The aggregates used in the mix of concrete are natural like sand, rock, gravel and water. These can be acquired without damaging the environment, thus, making it an eco-friendly material.

– Kanika Mathur

Concrete

Balancing Rapid Economic Growth and Climate Action

Published

on

By

Shares



Dr Yogendra Kanitkar, VP R&D, and Dr Shirish Kumar Sharma, Assistant Manager R&D, Pi Green Innovations, look at India’s cement industry as it stands at the crossroads of infrastructure expansion and urgent decarbonisation.

The cement industry plays an indispensable role in India’s infrastructure development and economic growth. As the world’s second-largest cement producer after China, India accounts for more than 8 per cent of global cement production, with an output of around 418 million tonnes in 2023–24. It contributes roughly 11 per cent to the input costs of the construction sector, sustains over one million direct jobs, and generates an estimated 20,000 additional downstream jobs for every million tonnes produced. This scale makes cement a critical backbone of the nation’s development. Yet, this vitality comes with a steep environmental price, as cement production contributes nearly 7 per cent of India’s total carbon dioxide (CO2) emissions.
On a global scale, the sector accounts for 8 per cent of anthropogenic CO2 emissions, a figure that underscores the urgency of balancing rapid growth with climate responsibility. A unique challenge lies in the dual nature of cement-related emissions: about 60 per cent stem from calcination of limestone in kilns, while the remaining 40 per cent arise from the combustion of fossil fuels to generate the extreme heat of 1,450°C required for clinker production (TERI 2023; GCCA).
This dilemma is compounded by India’s relatively low per capita consumption of cement at about 300kg per year, compared to the global average of 540kg. The data reveals substantial growth potential as India continues to urbanise and industrialise, yet this projected rise in consumption will inevitably add to greenhouse gas emissions unless urgent measures are taken. The sector is also uniquely constrained by being a high-volume, low-margin business with high capital intensity, leaving limited room to absorb additional costs for decarbonisation technologies.
India has nonetheless made notable progress in improving the carbon efficiency of its cement industry. Between 1996 and 2010, the sector reduced its emissions intensity from 1.12 tonnes of CO2 per ton of cement to 0.719 tonnes—making it one of the most energy-efficient globally. Today, Indian cement plants reach thermal efficiency levels of around 725 kcal/kg of clinker and electrical consumption near 75 kWh per tonne of cement, broadly in line with best global practice (World Cement 2025). However, absolute emissions continue to rise with increasing demand, with the sector emitting around 177 MtCO2 in 2023, about 6 per cent of India’s total fossil fuel and industrial emissions. Without decisive interventions, projections suggest that cement manufacturing emissions in India could rise by 250–500 per cent by mid-century, depending on demand growth (Statista; CEEW).
Recognising this threat, the Government of India has brought the sector under compliance obligations of the Carbon Credit Trading Scheme (CCTS). Cement is one of the designated obligated entities, tasked with meeting aggressive reduction targets over the next two financial years, effectively binding companies to measurable progress toward decarbonisation and creating compliance-driven demand for carbon reduction and trading credits (NITI 2025).
The industry has responded by deploying incremental decarbonisation measures focused on energy efficiency, alternative fuels, and material substitutions. Process optimisation using AI-driven controls and waste heat recovery systems has made many plants among the most efficient worldwide, typically reducing fuel use by 3–8 per cent and cutting emissions by up to 9 per cent. Trials are exploring kiln firing with greener fuels such as hydrogen and natural gas. Limited blends of hydrogen up to 20 per cent are technically feasible, though economics remain unfavourable at present.
Efforts to electrify kilns are gaining international attention. For instance, proprietary technologies have demonstrated the potential of electrified kilns that can reach 1,700°C using renewable electricity, a transformative technology still at the pilot stage. Meanwhile, given that cement manufacturing is also a highly power-intensive industry, several firms are shifting electric grinding operations to renewable energy.
Material substitution represents another key decarbonisation pathway. Blended cements using industrial by-products like fly ash and ground granulated blast furnace slag (GGBS) can significantly reduce the clinker factor, which currently constitutes about 65 per cent in India. GGBS can replace up to 85 per cent of clinker in specific cement grades, though its future availability may fall as steel plants decarbonise and reduce slag generation. Fly ash from coal-fired power stations remains widely used as a low-carbon substitute, but its supply too will shrink as India expands renewable power. Alternative fuels—ranging from biomass to solid waste—further allow reductions in fossil energy dependency, abating up to 24 per cent of emissions according to pilot projects (TERI; CEEW).
Beyond these, Carbon Capture, Utilisation, and Storage (CCUS) technologies are emerging as a critical lever for achieving deep emission cuts, particularly since process emissions are chemically unavoidable. Post-combustion amine scrubbing using solvents like monoethanolamine (MEA) remains the most mature option, with capture efficiencies between 90–99 per cent demonstrated at pilot scale. However, drawbacks include energy penalties that require 15–30 per cent of plant output for solvent regeneration, as well as costs for retrofitting and long-term corrosion management (Heidelberg Materials 2025). Oxyfuel combustion has been tested internationally, producing concentrated CO2-laden flue gas, though the high cost of pure oxygen production impedes deployment in India.
Calcium looping offers another promising pathway, where calcium oxide sorbents absorb CO2 and can be regenerated, but challenges of sorbent degradation and high calcination energy requirements remain barriers (DNV 2024). Experimental approaches like membrane separation and mineral carbonation are advancing in India, with startups piloting systems to mineralise flue gas streams at captive power plants. Besides point-source capture, innovations such as CO2 curing of concrete blocks already show promise, enhancing strength and reducing lifecycle emissions.
Despite progress, several systemic obstacles hinder the mass deployment of CCUS in India’s cement industry. Technology readiness remains a fundamental issue: apart from MEA-based capture, most technologies are not commercially mature in high-volume cement plants. Furthermore, CCUS is costly. Studies by CEEW estimate that achieving net-zero cement in India would require around US$ 334 billion in capital investments and US$ 3 billion annually in operating costs by 2050, potentially raising cement prices between 19–107 per cent. This is particularly problematic for an industry where companies frequently operate at capacity utilisations of only 65–70 per cent and remain locked in fierce price competition (SOIC; CEEW).
Building out transport and storage infrastructure compounds the difficulty, since many cement plants lie far from suitable geological CO2 storage sites. Moreover, retrofitting capture plants onto operational cement production lines adds technical integration struggles, as capture systems must function reliably under the high-particulate and high-temperature environment of cement kilns.
Overcoming these hurdles requires a multi-pronged approach rooted in policy, finance, and global cooperation. Policy support is vital to bridge the cost gap through instruments like production-linked incentives, preferential green cement procurement, tax credits, and carbon pricing mechanisms. Strategic planning to develop shared CO2 transport and storage infrastructure, ideally in industrial clusters, would significantly lower costs and risks. International coordination can also accelerate adoption.
The Global Cement and Concrete Association’s net-zero roadmap provides a collaborative template, while North–South technology transfer offers developing countries access to proven technologies. Financing mechanisms such as blended finance, green bonds tailored for cement decarbonisation and multilateral risk guarantees will reduce capital barriers.
An integrated value-chain approach will be critical. Coordinated development of industrial clusters allows multiple emitters—cement, steel, and chemicals—to share common CO2 infrastructure, enabling economies of scale and lowering unit capture costs. Public–private partnerships can further pool resources to build this ecosystem. Ultimately, decarbonisation is neither optional nor niche for Indian cement. It is an imperative driven by India’s growth trajectory, environmental sustainability commitments, and changing global markets where carbon intensity will define trade competitiveness.
With compliance obligations already mandated under CCTS, the cement industry must accelerate decarbonisation rapidly over the next two years to meet binding reduction targets. The challenge is to balance industrial development with ambitious climate goals, securing both economic resilience and ecological sustainability. The pathway forward depends on decisive governmental support, cross-sectoral innovation, global solidarity, and forward-looking corporate action. The industry’s future lies in reframing decarbonisation not as a burden but as an investment in competitiveness, climate alignment and social responsibility.

References

  • Infomerics, “Indian Cement Industry Outlook 2024,” Nov 2024.
  • TERI & GCCA India, “Decarbonisation Roadmap for the Indian Cement Industry,” 2023.
  • UN Press Release, GA/EF/3516, “Global Resource Efficiency and Cement.”
  • World Cement, “India in Focus: Energy Efficiency Gains,” 2025.
  • Statista, “CO2 Emissions from Cement Manufacturing 2023.”
  • Heidelberg Materials, Press Release, June 18, 2025.
  • CaptureMap, “Cement Carbon Capture Technologies,” 2024.
  • DNV, “Emerging Carbon Capture Techniques in Cement Plants,” 2024.
  • LEILAC Project, News Releases, 2024–25.
  • PMC (NCBI), “Membrane-Based CO2 Capture in Cement Plants,” 2024.
  • Nature, “Carbon Capture Utilization in Cement and Concrete,” 2024.
  • ACS Industrial Engineering & Chemistry Research, “CCUS Integration in Cement Plants,” 2024.
  • CEEW, “How Can India Decarbonise for a Net-Zero Cement Industry?” (2025).
  • SOIC, “India’s Cement Industry Growth Story,” 2025.
  • MDPI, “Processes: Challenges for CCUS Deployment in Cement,” 2024.
  • NITI Aayog, “CCUS in Indian Cement Sector: Policy Gaps & Way Forward,” 2025.

ABOUT THE AUTHOR:
Dr Yogendra Kanitkar, Vice President R&D, Pi Green Innovations, drives sustainable change through advanced CCUS technologies and its pioneering NetZero Machine, delivering real decarbonisation solutions for hard-to-abate sectors.

Dr Shirish Kumar Sharma, Assitant Manager R&D, Pi Green Innovations, specialises in carbon capture, clean energy, and sustainable technologies to advance impactful CO2 reduction solutions.

Continue Reading

Concrete

Carbon Capture Systems

Published

on

By

Shares



Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, explores the challenges and strategic considerations for cement industry as it strides towards Net Zero goals.

The cement industry does not need a reminder that it is among the most carbon-intensive sectors in the world. Roughly 7–8 per cent of global carbon dioxide (CO2) emissions are tied to cement production. And unlike many other heavy industries, a large share of these emissions come not from fuel but from the process itself: the calcination of limestone. Efficiency gains, fuel switching, and renewable energy integration can reduce part of the footprint. But they cannot eliminate process emissions.
This is why carbon capture and storage (CCS) has become central to every serious discussion
about cement’s pathway to Net Zero. The industry already understands and accepts this challenge.
The debate is no longer whether CCS will be required—it is about how fast, affordable, and seamlessly it can be integrated into facilities that were never designed for it.

In many ways, CCS represents the ‘last mile’of cement decarbonisation. Once the sector achieves effective capture at scale, the most difficult part of its emissions profile will have been addressed. But getting there requires navigating a complex mix of technical, operational, financial and regulatory considerations.

A unique challenge for cement
Cement plants are built for durability and efficiency, not for future retrofits. Most were not designed with spare land for absorbers, ducting or compression units. Nor with the energy integration needs of capture systems in mind. Retrofitting CCS into these existing layouts presents a series of non-trivial challenges.
Reliability also weighs heavily in the discussion. Cement production runs continuously, and any disruption has significant economic consequences. A CCS retrofit typically requires tie-ins to stacks and gas flows that can only be completed during planned shutdowns. Even once operational, the capture system must demonstrate high availability. Otherwise, producers may face the dual cost of capture downtime and exposure to carbon taxes or penalties, depending on jurisdiction.
Despite these hurdles, cement may actually be better positioned than some other sectors. Flue gas from cement kilns typically has higher CO2 concentrations than gas-fired power plants, which improves capture efficiency. Plants also generate significant waste heat, which can be harnessed to offset the energy requirements of capture units. These advantages give the industry reason to be optimistic, provided integration strategies are carefully planned.

From acceptance to implementation
The cement sector has already acknowledged the inevitability of CCS. The next step is to turn acceptance into a roadmap for action. This involves a shift from general alignment around ‘the need’ toward project-level decisions about technology, layout, partnerships and financing.
The critical questions are no longer about chemistry or capture efficiency. They are about the following:

  • Space and footprint: Where can capture units be located? And how can ducting be routed in crowded plants?
  • Energy balance: How can capture loads be integrated without eroding plant efficiency?
  • Downtime and risk: How will retrofits be staged to avoid prolonged shutdowns?
  • Financing and incentives: How will capital-intensive projects be funded in a sector with
    tight margins?
  • Policy certainty: Will governments provide the clarity and support needed for long-term investment
  • Technology advancement: What are the latest developments?
  • All of these considerations are now shaping the global CCS conversation in cement.

Economics: The central barrier
No discussion of CCS in the cement industry is complete without addressing cost. Capture systems are capital-intensive, with absorbers, regenerators, compressors, and associated balance-of-plant representing a significant investment. Operational costs are dominated by energy consumption, which adds further pressure in competitive markets.
For many producers, the economics may seem prohibitive. But the financial landscape is changing rapidly. Carbon pricing is becoming more widespread and will surely only increase in the future. This makes ‘doing nothing’ an increasingly expensive option. Government incentives—ranging from investment tax credits in North America to direct funding in Europe—are accelerating project viability. Some producers are exploring CO2 utilisation, whether in building materials, synthetic fuels, or industrial applications, as a way to offset costs. This is an area we will see significantly more work in the future.
Perhaps most importantly, the cost of CCS itself is coming down. Advances in novel technologies, solvents, modular system design, and integration strategies are reducing both capital requirements
and operating expenditures. What was once prohibitively expensive is now moving into the range of strategic possibility.
The regulatory and social dimension
CCS is not just a technical or financial challenge. It is also a regulatory and social one. Permitting requirements for capture units, pipelines, and storage sites are complex and vary by jurisdiction. Long-term monitoring obligations also add additional layers of responsibility.
Public trust also matters. Communities near storage sites or pipelines must be confident in the safety and environmental integrity of the system. The cement industry has the advantage of being widely recognised as a provider of essential infrastructure. If producers take a proactive role in transparent engagement and communication, they can help build public acceptance for CCS
more broadly.

Why now is different
The cement industry has seen waves of technology enthusiasm before. Some have matured, while others have faded. What makes CCS different today? The convergence of three forces:
1. Policy pressure: Net Zero commitments and tightening regulations are making CCS less of an option and more of an imperative.
2. Technology maturity: First-generation projects in power and chemicals have provided valuable lessons, reducing risks for new entrants.
3. Cost trajectory: Capture units are becoming smaller, smarter, and more affordable, while infrastructure investment is beginning to scale.
This convergence means CCS is shifting from concept to execution. Globally, projects are moving from pilot to commercial scale, and cement is poised to be among the beneficiaries of this momentum.

A global perspective
Our teams at Stantec recently completed a global scan of CCS technologies, and the findings are encouraging. Across solvents, membranes, and
hybrid systems, innovation pipelines are robust. Modular systems with reduced footprints are
emerging, specifically designed to make retrofits more practical.
Equally important, CCS hubs—where multiple emitters can share transport and storage infrastructure—are beginning to take shape in key regions. These hubs reduce costs, de-risk storage, and provide cement producers with practical pathways to integration.

The path forward
The cement industry has already accepted the challenge of carbon capture. What remains is charting a clear path to implementation. The barriers—space, cost, downtime, policy—are real. But they are not insurmountable. With costs trending downward, technology footprints shrinking, and policy support expanding, CCS is no longer a distant aspiration.
For cement producers, the decision is increasingly about timing and positioning. Those who move early can potentially secure advantages in incentives, stakeholder confidence, and long-term competitiveness. Those who delay may face higher costs and tighter compliance pressures.
Ultimately, the message is clear: CCS is coming to cement. The question is not if but how soon. And once it is integrated, the industry’s biggest challenge—process emissions—will finally have a solution.

ABOUT THE AUTHOR:
Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, holds expertise in project management, strategy, energy transition, and extensive international leadership experience.

Continue Reading

Concrete

The Green Revolution

Published

on

By

Shares



MM Rathi, Joint President – Power Management, Shree Cement, discusses the 3Cs – cut emissions, capture carbon and cement innovation – that are currently crucial for India’s cement sector to achieve Net Zero goals.

India’s cement industry is a backbone of growth which stand strong to lead the way towards net zero. From highways and housing to metros and mega cities, cement has powered India’s rise as the world’s second-largest producer with nearly 600 million tonnes annual capacity. Yet this progress comes with challenges: the sector contributes around 5 per cent of national greenhouse gas emissions, while also facing volatile fuel prices, raw material constraints, and rising demand from rapid urbanisation.
This dual role—driving development while battling emissions—makes cement central to India’s Net Zero journey. The industry cannot pause growth, nor can it ignore climate imperatives. As India pursues its net-zero 2070 pledge, cement must lead the way. The answer lies in the 3Cs Revolution—Cut Emissions, Cement Innovation, Capture Carbon. This framework turns challenges into opportunities, ensuring cement continues to build India’s future while aligning with global sustainability goals.

Cut: Reducing emissions, furnace by furnace
Cement production is both energy- and carbon-intensive, but India has steadily emerged as one of the most efficient producers worldwide. A big part of this progress comes from the widespread use of blended cements, which now account for more than 73 per cent of production. By lowering the clinker factor to around 0.65, the industry is able to avoid nearly seven million tonnes of CO2 emissions every year. Alongside this, producers are turning to alternative fuels and raw materials—ranging from biomass and municipal waste to refuse-derived fuels—to replace conventional fossil fuels in kilns.
Efficiency gains also extend to heat and power. With over 500 MW of waste heat recovery systems already installed, individual plants are now able to generate 15–18 MW of electricity directly from hot exhaust gases that would otherwise go to waste. On the renewable front, the sector is targeting about 10 per cent of its power needs from solar and wind by FY26, with a further 4–5 GW of capacity expected by 2030. To ensure that this renewable power is reliable, companies are signing round-the-clock supply contracts that integrate solar and wind with battery energy storage systems (BESS). Grid-scale batteries are also being explored to balance the variability of renewables and keep kiln operations running without interruption.
Even logistics is being reimagined, with a gradual shift away from diesel trucks toward railways, waterways, and CNG-powered fleets, reducing both emissions and supply chain congestion. Taken together, these measures are not only cutting emissions today but also laying the foundation for future breakthroughs such as green hydrogen-fueled kiln operations.

Cement: Innovations that bind
Innovation is transforming the way cement is produced and used, bringing efficiency, strength, and sustainability together. Modern high-efficiency plants now run kilns capable of producing up to 13,500 tonnes of clinker per day. With advanced coolers and pyro systems, they achieve energy use as low as 680 kilocalories per kilogram of heat and just 42 kilowatt-hours of power per tonne of clinker. By capturing waste heat, these plants are also able to generate 30–35 kilowatt-hours of electricity per tonne, bringing the net power requirement down to only 7–12 kilowatt-hours—a major step forward in energy efficiency.
Grinding technology has also taken a leap. Next-generation mills consume about 20 per cent less power while offering more flexible operations, allowing producers to fine-tune processes quickly and reduce energy costs. At the same time, the use of supplementary cementitious materials (SCMs) such as fly ash, slag and calcined clays is cutting clinker demand without compromising strength. New formulations like Limestone Calcined Clay Cement (LC3) go even further, reducing emissions by nearly 30 per cent while delivering stronger, more durable concrete.
Digitalisation is playing its part as well. Smart instrumentation, predictive maintenance, and automated monitoring systems are helping plants operate more smoothly, avoid costly breakdowns, and maintain consistent quality while saving energy. Together, these innovations not only reduce emissions but also enhance durability, efficiency, and cost-effectiveness, proving that sustainability and performance can go hand in hand.

Carbon: Building a better tomorrow
Even with major efficiency gains, most emissions from cement come from the chemical process of turning limestone into clinker—emissions that cannot be avoided without carbon capture. To address this, the industry is moving forward on several fronts. Carbon Capture, Utilisation and Storage (CCUS) pilots are underway, aiming to trap CO2 at the source and convert it into useful products such as construction materials and industrial chemicals.
At the same time, companies are embracing circular practices. Rainwater harvesting, wastewater recycling, and the use of alternative raw materials are becoming more common, especially as traditional sources like fly ash become scarcer. Policy and market signals are reinforcing this transition: efficiency mandates, green product labels and emerging carbon markets are pushing producers to accelerate the shift toward low-carbon cements.
Ultimately, large-scale carbon capture will be essential if the sector is to reach true net-zero
cement, turning today’s unavoidable emissions into tomorrow’s opportunities.

The Horizon: What’s next
By 2045, India’s cities are expected to welcome another 250 million residents, a wave of urbanisation that will push cement demand nearly 420 million tonnes by FY27 and keep rising in the decades ahead. The industry is already preparing for this future with a host of forward-looking measures. Trials of electrified kilns are underway to replace fossil fuel-based heating, while electric trucks are being deployed both in mining operations and logistics to reduce transport emissions. Inside the plants, AI-driven systems are optimising energy use and operations, and circular economy models are turning industrial by-products from other sectors into valuable raw materials for cement production. On the energy front, companies are moving toward 100 per cent renewable power, supported by advanced battery storage to ensure reliability around the clock.
This vision goes beyond incremental improvements. The 3Cs Revolution—Cut, Cement, Carbon is about building stronger, smarter, and more sustainable foundations for India’s growth. Once seen as a hard-to-abate emitter, the cement sector is now positioning itself as a cornerstone of India’s climate strategy. By cutting emissions, driving innovations and capturing carbon, it is laying the groundwork for a net-zero future.
India’s cement sector is already among the most energy-efficient in the world, proving that growth and responsibility can go hand in hand. By cutting emissions, embracing innovation, and advancing carbon capture, we are not just securing our net-zero future—we are positioning India as a global leader in sustainable cement.

ABOUT THE AUTHOR:
MM Rathi, Joint President – Power Management, Shree Cement, comes with extensive expertise in commissioning and managing over 1000 MW of thermal, solar, wind, and waste heat power plants.

Continue Reading

Trending News