Connect with us

Concrete

The future shall demand less energy intensive greener cements

Published

on

Shares

Dr Sujit Ghosh, Executive Director – New Product and R&D, Dalmia Cement (Bharat), discusses the alternative raw materials that can be used in the production of cement and its impact on carbon emissions while underscoring the major challenges faced in using other cementitious materials.

What are the core raw materials used in the production of cement?

The core raw materials used in the production of cement are limestone (calcium carbonate) and clay (a source of silica). First, the limestone is roasted/calcined to create activated lime (CaO) in a calciner and then the activated lime along with siliceous clay is proportioned along with some other minor ingredients into a raw mix design and charged inside a kiln to form cement clinker; which is basically made of complex compounds of calcium-silica-oxides primarily, which when mixed with water, reacts, to form a cementitious gel paste that binds all aggregates together and when dried up provides strength to the concrete/plaster, made with cement and the aggregates.

Limestone (calcium carbonate) and clay (silica), which are both available in nature, are inert materials. Only when they are heat-treated at temperatures above 900oC, they become activated lime (CaO) and activated/amorphous silica (SiO2), and fuse inside the cement kiln in liquid form to form complex calcium-silica-oxides, that is cement or cement clinker.

What are the alternative raw materials that can be used in the production of cement? How does that impact the process of production? 

As explained in the previous paragraph, any activated lime (CaO) and/or activated/amorphous silica (SiO2), could be potential sources of cementitious material.  These could be alternative raw materials for cement production. Thus far, the most widely found and used sources of alternative materials are primarily ‘fly ash’ and ‘blast furnace slag’. Fly ash is a waste product from the burning of coal (as in a thermal power plant etc). It primarily contains amorphous/activated silica (SiO2), but very little active lime (CaO) in the Indian context. So, it is not reactive on its own, it needs activated lime (CaO) to become cementitious – which is available from cement clinker, when the two are co-processed in a cement manufacturing plant. Blast furnace slag likewise is a waste product from the steel manufacturing process and does contain some activated silica and activated lime, but again, not in the proportion/concentration to itself become cementitious. It also has to be co-processed with a cement clinker in a cement manufacturing plant. Overall, these alternative or supplementary cementitious materials, which are other industry wastes, due to the need for co-processing with cement clinker, may add some costs to the production process, but since the use of such alternative raw materials, reduces the dependence on highly energy-intensive clinker, they are welcome by the cement manufacturing fraternity, that helps lower the carbon footprint of production. These cements are called ‘blended cements’ – either fly ash blended (popularly known as PPC) or slag blended (popularly known as PSC) or fly ash + slag blended (popularly known as PCC).

How can the cost of production be reduced by using alternative or supplementary raw materials in cement production?

Since the use of alternative / supplementary cementitious materials has been prevalent in the world and in India, for blended cement production, for the last couple of decades, the demand for such other industry wastes (primarily from thermal power plant or steel plant) has been increasing steadily. This has led to a steep increase in prices for these industry wastes (mainly slags from steel plants) which otherwise were previously dumped in landfills, by opportunistic players and profiteering groups. Also, since steel plants and thermal power plants are not co-located with cement plants geographically, transportation costs of such bulky waste materials have also been increasing. Cost of blended cement production has to reduce or at least maintain at par, as well as, at the same time assist the nation in beneficially getting rid of other-industry-wastes. Cement players can do justice to climate-change by producing less energy intensive blended cements that are in no way inferior in quality to pure-clinker cements. Transport subsidies should also be provided to cement manufacturers by the government as well as at the same time try and administer some polluter-to-pay mechanism (so that these wastes are not conveniently dumped away in nearby landfills by the relevant industries).

Kanika Mathur

Click here to read more

Concrete

Efficient Cooling Solution Boosts Gearbox Uptime

Published

on

By

Shares



Efficient Oil Cooling for Gearbox in the Cement Industry. How a High-Performance Plate Heat Exchanger Ensured Thermal Stability and Operational Continuity.

Contributed by: Narendra Joshi and Sourabh Mishra

Application: Gearbox Oil Cooling
Objective: To maintain optimal oil temperature in high-viscosity lubrication systems for gearboxes in cement plants, ensuring uninterrupted operations and minimizing production losses due
to overheating.
Challenge: A prominent cement manufacturing company’s conventional cooling systems were failing to maintain the oil temperature within the optimal range, jeopardizing equipment performance and leading to avoidable downtime.

Background with the Existing System
In heavy-duty industrial applications, particularly in the cement industry, gearboxes are critical components that must operate under high mechanical loads and harsh conditions. These gearboxes rely on lubrication systems where oil plays a dual role, lubrication and heat dissipation. A recurring challenge in such setups is managing the temperature of the gearbox oil. When oil heats beyond a critical limit, its viscosity drops, reducing its ability to form a protective film. This leads to increased friction between components, heat generation, and eventual damage to gearbox components — directly impacting plant uptime and production output.

Delivering Sustainable Heat Transfer Solution with HRS FUNKE High Efficiency Heat Exchanger
This system was selected for its:

  • Excellent thermal performance, ensuring rapid and efficient oil cooling even with high-viscosity fluids.
  • Leakage-proof operation, with no cross-contamination between cooling water and lubrication oil.
  • Robust design, capable of withstanding high operating pressures and variable flow conditions.

The plate exchanger was custom configured based on the oil’s properties, desired outlet temperature, and ambient heat load, ensuring that the oil remained within the specified viscosity range necessary for maintaining gearbox operation and lubrication integrity.

Performance Benefits Delivered

  • Oil temperature control and maintained consistently within target range
  • Viscosity stability and prevented breakdown of lubrication film
  • Equipment reliability and reduced risk of gearbox overheating or failure
  • Production continuity and eliminated unplanned stoppages
  • Long-Term savings and lower maintenance costs and extended oil life

Solution: To address the problem, HRS Process Systems Ltd recommended the installation of a Funke Plate Heat Exchanger a compact, high-efficiency thermal solution engineered specifically for industrial lubrication oil cooling.

Conclusion: The customer achieved precision oil temperature control, ensuring that the gearboxes operated at optimal conditions. This not only safeguarded the mechanical integrity of the gearbox but also directly contributed to higher plant uptime and improved production efficiency in heavy industries like cement manufacturing.

(Communication by the management of HRS Process Systems Ltd)

Continue Reading

Concrete

How Upgrades Can Deliver Energy Savings Across the Cement Process

Published

on

By

Shares



Jacob Brinch-Nielsen, Vice President of Professional Services, FLSmidth Cement, brings together recommendations from experts across the flow sheet to demonstrate the role of upgrades in optimising the cement manufacturing process.

Improving energy efficiency in material transport
Pneumatic conveying offers a cleaner and more contained alternative to mechanical conveying. However, pneumatic systems can also be energy-intensive, with inefficiencies arising from air leakage, pressure losses, and outdated equipment designs. Optimising these systems can significantly reduce energy consumption and operating costs.
“One major challenge is maintaining efficient air-to-material ratios, as excessive air use leads to unnecessary power consumption,” explains Emilio Vreca, Manager of PT Product Engineering “Leaks in piping and inefficient compressors further compound energy losses. To address these issues, upgrading to the latest pneumatic conveying solutions can yield substantial improvements.”
The latest pump design—the Fuller-Kinyon® (FK) ‘N’ Pump—provides power savings of up to 15 per cent thanks to an improved seal, while an extended barrel and screw design have improved volumetric efficiency by more than 15 per cent. Similarly, the latest generation Ful-Vane™ Air Compressor has been engineered for increased energy efficiency, with an improved inlet area for capturing larger air flows and compatibility with variable frequency drives.

Optimising energy efficiency in packing and dispatch
Even minor inefficiencies in bagging and palletising can lead to higher maintenance demands, increased material waste, and unnecessary energy use. Reducing these inefficiencies is yet another lever to improve overall plant performance and sustainability.
Upgrading rotary packers enhances weighing accuracy, reduces spout-to-spout variations, and lowers reject rates, improving both product consistency and energy efficiency. Similarly, replacing pneumatic drive systems in palletisers with electric alternatives eliminates compressed air dependency, leading to more precise bag handling and reduced energy demand. These targeted upgrades help streamline operations while minimising environmental impact.
A key development in dust control is the FILLPro™ Dust Reduction Kit for GIROMAT® EVO. “By refining material flow and fluidisation, FILLPro reduces dust emissions at the source, improving bagging efficiency and plant cleanliness,” explains Gabriele Rapizza, Proposal Engineer. “This reduces material loss, prevents blockages, and cuts down on maintenance, helping plants achieve a more stable and energy-efficient packing operation.”

How services contribute to increased energy efficiency
In the past, many viewed the role of the supplier as a “sell-and-move-on” model. Things have certainly changed. As cement producers face challenging markets, heightened competition, and increasingly ambitious decarbonisation targets there is little room to tolerate inefficiencies within the plant. The paradigm has shifted such that the value of expert services is as essential as the initial equipment supplied. Furthermore, as digital solutions progress at speed, a fluid, long-term partnership gives cement plants the best platform to take advantage of the latest tools.
Whether it’s an audit to identify why energy efficiency has decreased from one year to the next, or even an optimisation package preparing your plant for carbon capture solutions – we are believers in the principle that there is always more we can do to improve efficiency. For example, our Online Condition Monitoring Services (OCMS) provide continuous monitoring of critical equipment such as the kiln, mills, cooler and fans, aggregating data and utilising advanced algorithms to identify potential trouble spots. As the OEM and an experienced full solutions provider, we can support these services with expert advice, not only alerting you to a problem but also providing recommendations as to how to remedy it or attending site to support you in person.

Small upgrades, big impact
Energy efficiency is a critical factor, influencing both operational costs and sustainability goals. While large-scale innovations such as carbon capture will play an essential role in long-term decarbonisation (and steal the headlines), incremental mechanical upgrades offer an immediate pathway to lower energy consumption with minimal disruption.
By optimising key process areas — grinding, dosing, combustion, cooling, and material transport — you can achieve measurable energy savings while improving performance and flexibility. These solutions provide a strong return on investment and pave the way for a more sustainable cement industry.

Part 3 of 3. Read Part 1 in the May issue of Indian Cement Review and Par 2 in the June issue of the Indian Cement Review magazine.

(Communication by the management of the company)

Continue Reading

Concrete

Star Cement launches ‘Star Smart Building Solutions’

Published

on

By

Shares



Star Cement has launched ‘Star Smart Building Solutions,’ a new initiative aimed at promoting sustainable construction practices, as per a recent news report. This venture introduces a range of eco-friendly products, including tile adhesives, tile cleaners and grouts, designed to enhance durability and reduce environmental impact. The company plans to expand this portfolio with additional value-added products in the near future. By focusing on sustainable materials and innovative building solutions, Star Cement aims to contribute to environmentally responsible construction and meet the evolving needs of modern infrastructure development.

Image source:https://www.starcement.co.in/

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds

    This will close in 0 seconds