Connect with us

Environment

Retrofitting in Cement Plants for Emissions Reduction

Published

on

Shares

Gaseous emission – nitrogen oxides and sulphur oxides – can be reduced by making some changes to the existing installation.

The cement manufacturing process has undergone a lot of technological advancements with respect to product types, raw material and fuel types and improved automation and energy efficiency. Most of the emissions to the environment are in the form of particulates, carbon dioxide, nitrogen oxides and sulphur oxides in exhaust gases. In some countries, mercury emissions are monitored and controlled. In cases where fuel or raw material quality lead to higher emissions, end of pipe control technology can be applied to meet emission norms.

NOX formation in kiln flames is generally by both thermal and fuel routes (for coal, oil and petroleum coke). NOX formation takes place in the high temperature clinker burning process and the amount is directly related to the main flame temperature which is typically 1800 -2000?C. Thermal NOX is formed by the combination of atmospheric nitrogen and oxygen at very high temperatures. The reaction takes place between oxygen radicals, nitrogen radicals and molecular nitrogen. Apart from temperature, the in-flame oxygen concentration and the residence time in the high temperature zones influence the final thermal NOX emissions. Most fuels, other than gas, contain nitrogen bound as an organic compound in the structure. When the fuel is burnt this organic nitrogen becomes converted into a range of cyanide and amine species some of which are subsequently oxidised to NOX, depending on the local oxygen availability, but this mechanism is less dependent on temperature. Typical NOX emission values in older technologies can be as high as 1800-2000 mg/Nm3, while average emission values are around 1200 mg/Nm3 (based on 10% O2).

Sulphur is input into the clinker burning process via raw materials and fuels. Higher SO2 emissions by rotary kiln systems in the cement industry are due to sulphides contained in the raw material which become oxidised to form SO2 at the temperatures between 370 to 420?C prevailing in the kiln preheater. In some cases sulphur in fuel can also affect the emission of SO2. High values in the range of 600 to 800 mg/Nm3 have been observed.

Recently the norms for gaseous emissions from cement plants have undergone revision in India and the Ministry of Environment and Forests (MoEF) has amended the Environment (protection) Rules of 1986. The limits for NOX emissions for new plants are set at 600 mg/ Nm3 at 10%O2 (800 for older plants), and that for SO2 are set at 100 mg/Nm3 at 10% O2, dry basis. It will therefore be essential for producers to review their current operations to meet these new requirements, which are now quite stringent.

NOX emissions are dependent on certain process related factors such as

  • Feed mix composition
  • Kiln fuel type
  • Increased thermal efficiency
  • Burner Type

There are certain limits to which these factors can be optimised to reduce emissions while ensuring product quality and operational efficiency. As a result it becomes necessary to look at other solutions like retrofitting existing preheater, calciner or Tertiary Air TA duct to reduce the emissions.

For controlling NOX emissions the following retrofitting options can be incorporated in existing Preheater Precalciner type Dry cement Kilns.

Installing low NOX burners (LNB) in the kiln.
Two distinct combustion zones are created using LNBs. Flame turbulence and air and fuel mixing are suppressed during the first stage of combustion. A fuel-rich, oxygen-lean, high temperature combustion zone is created first by reducing the amount of primary air in the primary combustion zone and delaying the combustion of all of the fuel. A portion of the flue gas can be recycled into the primary combustion zone to reduce the oxygen content of the primary air.

At the high temperatures required to complete clinkering reactions, thermal NOX formation is suppressed in the primary combustion zone because less oxygen is available.

A secondary, oxygen-rich combustion zone follows, where fuel combustion is completed. Cooler secondary combustion air is mixed into the secondary combustion zone, lowering the temperature. Although excess oxygen is available, NOX formation is suppressed in the secondary combustion zone because of lower temperature. This method can secure to 10%-15% NOX reduction. However, the exact values will depend on the existing level of emissions.

Staged combustion in Calciner (SCC)
SCC works by staging the introduction of fuel, combustion air, and feed material in a manner to minimise NOX formation and reduce NOX to nitrogen. NOX formed in the kiln?s combustion zone is chemically reduced by maintaining a reducing atmosphere at the kiln feed end by firing fuel in this region. The reducing atmosphere is maintained in the calciner region by controlling combustion air such that the calcining fuel is first burned under reducing conditions to reduce NOX and then burned under oxidising conditions to complete the combustion reaction. However, the overall process parameters during kiln operation under such reducing conditions must be carefully watched to limit the CO emission, especially where ESP is being used instead of bag house.

Controlling the introduction of raw meal allows for control of the calciner temperature. Through these mechanisms, both fuel NOX and thermal NOX are controlled. The combustion chamber allows for improved control over the introduction of tertiary air in the calciner region, which helps to promote the proper reducing environment for NOX control.

The various technology providers achieve this staged combustion by different methods:

  • Staged air combustion in which along with delivery of the tertiary air to the calciner inlet, a portion of the tertiary air is delivered close to calciner outlet. Modification to the TA duct and calciner is required.
  • Staged air and fuel: Fuel is fired both in kiln riser and calciner and TA is delivered both at inlet of calciner and in the combustion zone close to the calciner outlet.
  • Sequenced Fuel and Air: This is the case of a typical Low NOX ILC system, where all fuel is fired in a reducing atmosphere near the kiln inlet, and tertiary air is supplied in the lower part of the calciner. Raw meal is split and introduced at different sections of the calciner. This type of calciner does not stage fuel or air, but instead injects all calciner fuel at the bottom of the calciner, before the kiln inlet. All tertiary air is introduced at a single point just above the fuel. A high-temperature reducing zone is created in the kiln riser duct, and the calciner is partially built into the kiln riser.

This method can secure to 25%-30% NOX reduction. However the exact values will depend on the existing level of emissions.

Selective Non-Catalytic Reduction
The SNCR process is basically the injection of ammonia in the form of ammonia water or urea in the flue-gas at a suitable temperature. An aqueous ammonia solution is the reagent that has been most often used for cement kilns, and experience indicates that an ammonia solution is most effective for PH/PC cement kiln applications. Other reagent alternatives include anhydrous ammonia (injected as a gas), urea solutions, and ammonium sulfate solutions. This reagent is called a reductant.

An SNCR system?s performance depends on

  • Residence time available in optimum temperature range
  • Degree of mixing between injected reagent and combustion gases
  • Uncontrolled NOX concentration level and Oxygen level
  • Molar ratio of injected reagent to uncontrolled NOX.

The SNCR system can be easily installed as retrofit in an existing pyroprocessing system. The following are the main additions

  • Reductant receipt and storage section. Adequate safety measures have to be taken for the handling of Ammonia solution or Ammonia.
  • The reductant pumping and delivery section
  • The reductant distribution system
  • The ammonia injection lances at calciner and/or kiln riser duct. The exact location and number of injection points will differ from one system to the next and are ptimised through testing.
  • Measurement equipment is necessary to maintain the appropriate ammonia feed rate and additional monitoring equipment is required to record the amount of NOx and ammonia slip in the gases exiting the SNCR system to adjust the amount of ammonia entering the system.
  • Temperature monitors are also required to make sure that the ammonia is delivered to the correct location.

Sometimes it may be necessary to use multiple reduction techniques so that the emission standards can be met. Due to the high operational cost of the system, SNCR should be used to the extent necessary only after achieving NOx reduction based on Process Optimisation and other retrofitting avenues described earlier in this paper. Similarly the SO2 emission from kilns are dependent on multiple factors, some of which can be optimised to reduce emissions. The following factors can be evaluated to optimise the SO2 emissions from cement kiln:

  • Inherent SO2 removal efficiency of the kiln system,
  • Limit raw material sulphur concentration and form of sulphur,
  • Raw mix design: The molecular ratio between sulphur (and chloride) and alkalis (sodium and potassium),
  • Whether oxidising or reducing conditions exist in the kiln system and where these conditions exist,
  • The temperature profile in the kiln system,
  • If an in-line raw mill is available and operating.
  • When the emission values cannot be improved by process optimisation alone, it becomes necessary to adopt suitable secondary measures. Some of the retrofit solutions are described below.

Lime Addition to Kiln Feed
Lime Addition to Kiln Feed consists of mixing lime (CaO) with the raw Kiln feed. The CaO would react with SO2 driven off in the kiln to form calcium sulfite (CaSO3) and calcium sulfate (CaSO4). The reactions can occur in the calciner, throughout the rotary kiln, and in the lower stages of the flash calciner (i.e., at any location in the system at which CaO and SO2 are present simultaneously and are mixed adequately). The amount of SO2 absorbed through this mechanism at any location in the pyroprocess is dependent on the site-specific temperature and other factors such as the time of contact between the reactants. Once sulfur is absorbed as CaSO4 in the materials in the pyroprocess, it is unlikely to be released again as SO2. CaSO4 would be retained in the raw mix and ultimately be converted into clinker.

Installation of SOX reduction cyclone
SO2 formed in the upper cyclone stages of the preheater can be reduced by reaction with the naturally occurring CaO present in the pyro system. CaO is formed in the calciner, and gas and dust containing high amounts of CaO can be directed to the upper stages for SO2 reduction by a minor calciner modification.

This SO2 removal system consists of a low pressure cyclone, with inlet outlet ducts, a material feed pipe, sluice flap and distribution box. The inlet duct conveys gas from the inline calciner to the SO2 collecting cyclone. The outlet duct conveys gas to the Stage two or three inlet duct. A material feed pipe is provided for the SO2 collecting cyclone and will terminate at stage below top stage or top stage distribution box. This system uses the differential pressure across the preheater tower to provide the driving force to convey the calcined material from the bottom to top.

Upto 35% control of SO2 is possible depending on existing situation in the kiln.

Dry Sorbent Injection
Dry Sorbent Injection (DSI) utilises finely ground sorbent which is injected in the gas stream of the kiln. The sorbent typically used is a hydrated lime, sodium bicarbonate or Trona (soda ash). Water may be injected separately from the sorbent either downstream or upstream of the dry sorbent injection point to humidify the flue gas. The relative position of the dry sorbent and water injection is optimised to promote maximum droplet scavenging or impacts between sorbent particles and water droplets, both suspended in the gas stream. Fly ash, reaction products, and any unreacted sorbent are collected in the particulate control device. Some extent of dry scrubbing is inherent in the preheater tower.

Upto 60% control of SO2 is possible depending on the amount of lime that is fed into the kiln.

Wet Lime Scrubbing
This is based on the reaction between Ca(OH)2 and SO2 with a lime slurry is introduced as a mist into a gas stream containing SO2. The mole ration of Ca(OH)2 to SO2 is usually 2:1. This slurry can be introduced in the existing Gas Conditioning tower located between preheater and in-line raw mills. The lime spray can be modulated depending on kiln operating conditions such as when raw mill is not in operation.

Upto 90% control of SO2 is possible depending on the existing system and improvement required. However the handling of such systems with the cement plant entails higher operation and maintenance costs. Hence the wet and semi-dry processes are not deployed unless the emissions are exceptionally high.

Engineering consultants like ERCOM, who have a global experience, have already assisted their customers abroad in achieving stringent emission limits. A quick and efficient technical audit can be carried for existing cement plants to check the likely compliance levels with respect to the new MoEF Notification. By assisting plants in carrying out process optimisation, we can help reduce the emissions with primary measures. In order to achieve further reductions, we can help clients in selecting the appropriate cost effective retrofit solution. Plant modifications for reduction of emission can be evaluated by us and we can aid in timely implementation with minimum disturbance to plant operation. Together with technology providers and cement plant owners, we can go a long way in paving the path for sustainable and environment friendly cement production.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

We engineer smarter systems to reduce waste

Published

on

By

Shares

Naveen Kumar Sharma, AVP – Sales and Marketing, Toshniwal Industries, talks about redefining instrumentation with customised, digitally enabled solutions engineered for harsh plant environments.

For over six decades, Toshniwal Industries has played a pioneering role in advancing process instrumentation for Indian manufacturing. In this exclusive conversation with Kanika Mathur, Naveen Kumar Sharma, AVP – Sales & Marketing, explains how the company designs kiln and grinding plant solutions tailored to the unique demands of the cement industry. As plants transition to higher AFR use and smarter automation, Toshniwal’s technologies offer greater reliability, accuracy and predictive insight.

Tell us how are your process instruments and condition monitoring system customised for cement kilns and grinding plant operations?
Toshniwal is a company with a legacy of over 65 years, and our experience has taught us that cement kilns and grinding units are fundamentally different in their operational demands. As an Indian company, we understand the unique requirements of Indian cement manufacturers. We work closely with our customers, engage deeply with their technical teams, and study operational challenges in real-time.
Based on these insights, we customise our solutions for both kiln and grinding applications. This tailoring is not just at a product level, but at a solution level—engineering design, instrumentation logic, and process optimisation. Our primary objective, for both the industry and our customers, is to reduce yield loss. Every customisation we implement is driven by this goal. We engineer smarter systems to reduce waste, improve consistency and increase plant reliability.
Ultimately, our solutions are built on an understanding that cement manufacturers require robust, practical and maintainable instruments. We design with this mindset so plants can operate more efficiently, with better control and higher profitability.

With the rising use of AFR, how do your solutions support thermal zone reliability and process time?
Our solutions are built around four core parameters: energy efficiency, yield loss reduction, product quality and environmental responsibility. These pillars drive our engineering decisions and define how our technologies support cement plants, especially as they adopt alternative fuels and raw materials (AFR).
We strongly believe in energy conservation. Every product we offer—whether for thermal monitoring, kiln control or flame optimisation—is engineered to improve energy performance. Reducing yield loss is another principle deeply embedded in our solutions, because production interruptions and material losses directly affect plant profitability and clinker quality.
We are also highly conscious of the end-product quality delivered by our customers to their markets. Consistency in burning, heat transfer, and thermal profiling directly influences clinker characteristics, and our instruments help maintain this stability.
Lastly, and most importantly, we care about the environment. We want to leave a greener world for the next generation. This mindset aligns with India’s digitalisation movement, advocated by our Prime Minister. Digital technologies are crucial for optimising AFR use, process stability, emissions and kiln efficiency. We are proud to contribute to this transition.
By optimising flame patterns, energy use, and pollution, our solutions deliver direct and indirect savings. Plants benefit from lower operational losses, reduced maintenance, and improved reliability, especially in pyroprocessing zones.

Tell us how do you address harsh environment challenges in cement plants, say dust, temperature, etc. with your sensor and monitoring?
This is a very important question because cement plants, steel plants, and power plants operate in extremely harsh environments. There are two major categories of specifications that we must respect while designing solutions: technical specifications and environmental specifications. Technical specifications relate to performance accuracy, measurement integrity, responsiveness and process safety. Environmental specifications, on the other hand, relate to high temperatures, heavy dust, humidity, vibrations and corrosive atmospheres. Our solutions are engineered to withstand both. We customise sensors, housings, mounting mechanisms and protective systems so that our instruments operate at 100 per cent functionality in harsh conditions. We ensure that the plant experiences minimal downtime from our systems. That is our engineering philosophy—solutions must work reliably in real-world environments, not just in ideal laboratory conditions.

What retrofit pathways do you offer for older cement lines to upgrade measurement and monitoring systems and how is the Indian market responding?
Every solution we provide is scalable and digitally adaptable. Technology evolves rapidly, and our offerings evolve with it. When we upgrade instruments or monitoring systems, we design them to integrate with existing plant infrastructure, so customers do not have to rebuild everything from scratch. Once our solution is installed, software upgrades or performance improvements can often be deployed without major cost. This ensures that customers continue to benefit from ongoing technological advancements. The Indian market has responded positively to this approach. Plant operators appreciate solutions that are future-ready and dynamic rather than static. Scalability helps them maintain competitiveness, extend asset life, and move toward smart manufacturing with confidence.

So how is your organisation leveraging digital technologies in your instrumentation portfolio for cement plants?
Digitalisation is at the core of every product we manufacture. We stand firmly behind the digital movement, not only because it represents efficiency, but because it is the direction in which the Indian industrial ecosystem is evolving. We deploy machine-vision technologies, advanced inline monitoring systems, and solutions capable of visualising the
inside of the furnace. These systems help reduce downtime, enable predictive asset management and provide actionable analytics to customers. All our technologies communicate seamlessly with Level 1, Level 2, and Level 3 automation. This allows integration across SCADA, DCS, ERP, and cloud ecosystems. Digitalisation for us is not an add-on—it is foundational to how our instrumentation is built.

What are your key innovation priorities to help Indian cement plant producers hit harder, higher substitution rates, lower emissions and smarter processing?
Sustainability is a national priority, and we are committed to supporting it. Our current portfolio already helps improve efficiency, reduce emissions, and support alternative fuel integration. But our innovation roadmap goes further. We are now developing specialised productivity-oriented software modules that will provide proactive alerts—not just alarms triggered after a fault has occurred. These modules will leverage artificial intelligence and machine learning to detect patterns early. The intention is to help plant teams take corrective actions ahead of time, reducing yield loss and environmental impact. Instead of informing the plant that a disruption has happened, the system will indicate that a disruption will happen, giving operators time to prevent it. We believe that within the next 12 to 18 months, we will launch these predictive solutions in combination with our instrumentation. When implemented, they will significantly improve decision-making, process stability and environmental performance across the Indian cement sector.

– Kanika Mathur

Continue Reading

Concrete

India donates 225t of cement for Myanmar earthquake relief

Published

on

By

Shares

On 23 May 2025, the Indian Navy ship UMS Myitkyina arrived at Thilawa (MITT) port carrying 225 tonnes of cement provided by the Indian government to aid post-earthquake rebuilding efforts in Myanmar. As reported by the Global Light of Myanmar, a formal handover of 4500 50kg cement bags took place that afternoon. The Yangon Region authorities managed the loading of the cement onto trucks for distribution to the earthquake-affected zones.

Continue Reading

Concrete

Reclamation of Used Oil for a Greener Future

Published

on

By

Shares

In this insightful article, KB Mathur, Founder and Director, Global Technical Services, explores how reclaiming used lubricants through advanced filtration and on-site testing can drive cost savings, enhance productivity, and support a greener industrial future. Read on to discover how oil regeneration is revolutionising sustainability in cement and core industries.

The core principle of the circular economy is to redefine the life cycle of materials and products. Unlike traditional linear models where waste from industrial production is dumped/discarded into the environment causing immense harm to the environment;the circular model seeks to keep materials literally in continuous circulation. This is achievedthrough processes cycle of reduction, regeneration, validating (testing) and reuse. Product once
validated as fit, this model ensures that products and materials are reintroduced into the production system, minimising waste. The result? Cleaner and greener manufacturing that fosters a more sustainable planet for future generations.

The current landscape of lubricants
Modern lubricants, typically derived from refined hydrocarbons, made from highly refined petroleum base stocks from crude oil. These play a critical role in maintaining the performance of machinery by reducing friction, enabling smooth operation, preventing damage and wear. However, most of these lubricants; derived from finite petroleum resources pose an environmental challenge once used and disposed of. As industries become increasingly conscious of their environmental impact, the paramount importance or focus is shifting towards reducing the carbon footprint and maximising the lifespan of lubricants; not just for environmental reasons but also to optimise operational costs.
During operations, lubricants often lose their efficacy and performance due to contamination and depletion of additives. When these oils reach their rejection limits (as they will now offer poor or bad lubrication) determined through laboratory testing, they are typically discarded contributing to environmental contamination and pollution.
But here lies an opportunity: Used lubricants can be regenerated and recharged, restoring them to their original performance level. This not only mitigates environmental pollution but also supports a circular economy by reducing waste and conserving resources.

Circular economy in lubricants
In the world of industrial machinery, lubricating oils while essential; are often misunderstood in terms of their life cycle. When oils are used in machinery, they don’t simply ‘DIE’. Instead, they become contaminated with moisture (water) and solid contaminants like dust, dirt, and wear debris. These contaminants degrade the oil’s effectiveness but do not render it completely unusable. Used lubricants can be regenerated via advanced filtration processes/systems and recharged with the use of performance enhancing additives hence restoring them. These oils are brought back to ‘As-New’ levels. This new fresher lubricating oil is formulated to carry out its specific job providing heightened lubrication and reliable performance of the assets with a view of improved machine condition. Hence, contributing to not just cost savings but leading to magnified productivity, and diminished environmental stress.

Save oil, save environment
At Global Technical Services (GTS), we specialise in the regeneration of hydraulic oils and gear oils used in plant operations. While we don’t recommend the regeneration of engine oils due to the complexity of contaminants and additives, our process ensures the continued utility of oils in other applications, offering both cost-saving and environmental benefits.

Regeneration process
Our regeneration plant employs state-of-the-art advanced contamination removal systems including fine and depth filters designed to remove dirt, wear particles, sludge, varnish, and water. Once contaminants are removed, the oil undergoes comprehensive testing to assess its physico-chemical properties and contamination levels. The test results indicate the status of the regenerated oil as compared to the fresh oil.
Depending upon the status the oil is further supplemented with high performance additives to bring it back to the desired specifications, under the guidance of an experienced lubrication technologist.
Contamination Removal ? Testing ? Additive Addition
(to be determined after testing in oil test laboratory)

The steps involved in this process are as follows:
1. Contamination removal: Using advanced filtration techniques to remove contaminants.
2. Testing: Assessing the oil’s properties to determine if it meets the required performance standards.
3. Additive addition: Based on testing results, performance-enhancing additives are added to restore the oil’s original characteristics.

On-site oil testing laboratories
The used oil from the machine passes through 5th generation fine filtration to be reclaimed as ‘New Oil’ and fit to use as per stringent industry standards.
To effectively implement circular economy principles in oil reclamation from used oil, establishing an on-site oil testing laboratory is crucial at any large plants or sites. Scientific testing methods ensure that regenerated oil meets the specifications required for optimal machine performance, making it suitable for reuse as ‘New Oil’ (within specified tolerances). Hence, it can be reused safely by reintroducing it in the machines.
The key parameters to be tested for regenerated hydraulic, gear and transmission oils (except Engine oils) include both physical and chemical characteristics of the lubricant:

  • Kinematic Viscosity
  • Flash Point
  • Total Acid Number
  • Moisture / Water Content
  • Oil Cleanliness
  • Elemental Analysis (Particulates, Additives and Contaminants)
  • Insoluble

The presence of an on-site laboratory is essential for making quick decisions; ensuring that test reports are available within 36 to 48 hours and this prevents potential mechanical issues/ failures from arising due to poor lubrication. This symbiotic and cyclic process helps not only reduce waste and conserve oil, but also contributes in achieving cost savings and playing a big role in green economy.

Conclusion
The future of industrial operations depends on sustainability, and reclaiming used lubricating oils plays a critical role in this transformation. Through 5th Generation Filtration processes, lubricants can be regenerated and restored to their original levels, contributing to both environmental preservation and economic efficiency.
What would happen if we didn’t recycle our lubricants? Let’s review the quadruple impacts as mentioned below:
1. Oil Conservation and Environmental Impact: Used lubricating oils after usage are normally burnt or sold to a vendor which can be misused leading to pollution. Regenerating oils rather than discarding prevents unnecessary waste and reduces the environmental footprint of the industry. It helps save invaluable resources, aligning with the principles of sustainability and the circular economy. All lubricating oils (except engine oils) can be regenerated and brought to the level of ‘As New Oils’.
2. Cost Reduction Impact: By extending the life of lubricants, industries can significantly cut down on operating costs associated with frequent oil changes, leading to considerable savings over time. Lubricating oils are expensive and saving of lubricants by the process of regeneration will overall be a game changer and highly economical to the core industries.
3. Timely Decisions Impact: Having an oil testing laboratory at site is of prime importance for getting test reports within 36 to 48 hours enabling quick decisions in critical matters that may
lead to complete shutdown of the invaluable asset/equipment.
4. Green Economy Impact: Oil Regeneration is a fundamental part of the green economy. Supporting industries in their efforts to reduce waste, conserve resources, and minimise pollution is ‘The Need of Our Times’.

About the author:
KB Mathur, Founder & Director, Global Technical Services, is a seasoned mechanical engineer with 56 years of experience in India’s oil industry and industrial reliability. He pioneered ‘Total Lubrication Management’ and has been serving the mining and cement sectors since 1999.

Continue Reading

Trending News