Economy & Market
RMC Growth in Spurts
Published
3 years agoon
By
admin
The facts are thus. The current production of RMC is around 15 to 20 million cu m a year as against a total concrete market of approximately 300 million cu m a year. Which means, from 20 million to 300 million cu m, there is a lot of catching up to do. INDIAN CEMENT REVIEW meets up with cement and RMC manufacturers, RMC dealers and suppliers, and concrete equipment manufacturers to find out what hampers industry growth.
The volley of questions thrown at us by a leading RMC dealer in Mumbai, Bakul, is very pertinent. ´RMC is eco-friendly, it is beneficial for infrastructure and it is cost-effective; it brings more quality to the end product. If the government is convinced of this, then why can`t they incentivise the use of RMC? Why would someone not use it if there is a monetary benefit linked to it? Why can´t the existing tax system be restructured to promote RMC?
The mood and the veiled anger are quite understandable, and pretty much justifies the capacity-demand- supply mismatch. The statistics supports the mismatch, too; on a positive note, it reflects the huge potential the RMC industry has. According to Shyam Bagri, Partner, Dwarka Agencies, the current market size of RMC is estimated to be Rs 5,000 crore to Rs 6,000 crore approximately, whereas the current production of RMC is around 15 to 20 million cu m a year, as against a total concrete market of approximately 300 million cu m a year. Bagri adds, ´The ready -mix concrete business in India is still in its infancy, unlike in developed countries, nearly 80 per cent of cement consumption is in the form of ready- mix concrete and 20 per cent in the form of precast. In India, ready- mix concrete accounts for less than nine per cent of consumption; as much as 82 per cent of cement consumption is in the form of site-mixed concrete.´
It has been proved many times over that the use of RMC brings in numerous advantages in terms of quality of the end product; its positives include the impact on the durability of the end product, environment-friendliness, the speed of construction it guarantees, cost-efficiency, and most importantly, the value addition it can bring with regard to the application and performance- based products as per the requirements of the customer. The raw materials used for ready- mix concrete like cement, sand, coarse / fine aggregates and water are mixed at a centrally located computer controlled batching plant that monitors weigh-batching, water-cement ratio, dosage of admixture, moisture content, etc, with precision to produce the ready- mix concrete; and an RMC plant is capable of programming different types of mixes for producing different grades of concrete depending on the need of the customer. Why we are still stuck with the minimum grade of concrete?
There are many success stories. The grade of concrete depends on the end application. The more challenging the structural demand, the higher the grade of concrete used. M70 concrete was used for the JJ flyover; the Bandra-Worli Sea link was made with M60 grade concrete; all metros have M60 concrete; the World One, the world´s tallest residential tower by the Lodha Group, as per reports, is using M80 concrete. Says Prabir Ray, Executive President, Ready Mix Concrete, Key Accounts and Building Products, UltraTech, ´We are presently stuck with the minimum range of grades for concrete. It is further accentuated by the existing market- based design specifications for concrete which sets prescriptions like minimum cement content, and specifications like pure OPC concrete only, or limiting supplementary cementetious material to 15 to 20 per cent only, and so on.´ Prabir adds, ´This gives serious RMC players no scope to demonstrate their understanding of making good concrete with optimum OPC contents matching the strength requirements of the grade or having a better control in terms of QC/production manpower, emphasis on training, research and development facilities. We have to consider durability-based specifications in addition to strength-based specifications, as also application oriented concrete, to harness the full potential of the material.´
Market scenario
According to Prabir Ray, RMC demand is driven primarily by the real estate sector and supported by the infrastructure and industrial sector. Ray says, ´Around 76 per cent of the concrete demand originates from housing construction. The infrastructure sector (roads, power, airport, urban infrastructure, railways, etc) accounts for 17 per cent of the total RMC demand; it will continue to be driven by these sectors and will depend on the construction opportunities presented by these sectors. Then, around 79 per cent of the RMC demand is driven by Tier I cities in 2012-13. This can be attributed to higher awareness of the benefits of RMC usage, higher concentration of large scale projects coupled with focus on quality, timely delivery and control of wastage. Also, space constraints, along with government and municipal bodies´ initiatives to control pollution, have all encouraged the use of RMC. In 2012-13, the overall economic slowdown, sluggishness in construction activity, liquidity crunch and policy hurdles resulted in the lower demand growth of concrete.´
Says Bankat Mandhania, Director, Ashtech (India), ´Though the demand is less in India, the RMC market is growing. Yes, it is true that in foreign countries today, 90 per cent of the concrete manufactured is sold in RMC form. Here, things are a bit different. If you check Indian markets, almost 70 per cent of the cement is sold in bags. That gives you a comparison between the two. Masons and builders here need to be updated and that takes time. But once a builder uses RMC, he understands the advantage. It also requires some volume of work to be done over a period of time. But those into constructing small buildings and two-storey apartments will not go for RMC. Once we start doing sizeable projects, the construction community will experience the benefits of RMC first- hand.´
Maruti Srivastava, VP Marketing, Lafarge India had this to say. ´A major part of India still comprises smaller towns where the majority of individual home builders prefer using conventional methods of construction. Overall in India, site mix is still perceived to be a cost- effective material as opposed to ready- mix concrete, though that is not really the case anymore.´
Supply chain constraints
´Effective transportation is all the more important in the RMC sector,´ avers Pratap Hegde, Managing Director, Telematics4u, which has done a thorough research on road transportation challenges faced by the cement industry and which is also delivering the comprehensive Cement Logistics Management Solution (CLMS) across more than 55 countries. According to Pratap, there are major reasons for the supply of substandard quality concrete: usage of low-quality raw materials, deviation from Standard Operating Procedures (SOP) at RMC plants, and unregulated concrete transportation. Pratap says, ´The first two challenges have been brought under control, by completely automating RMC plant operations and also by setting up sophisticated Quality Control (QC) labs. But the third challenge pertaining to transportation still remains unaddressed and has now become the weakest link in the chain. According to an estimate, as many as 59 per cent cases of supplying substandard quality concrete and 50 per cent of RMC sales returns are due to transportation issues. It is high time to address this bottleneck and pave the way for vigorous growth of the RMC sector.´
Shubhangi Tirodkar, Director, Bakul points out, ´Once the transit mixer leaves the plant there are various uncertainties on the way. It is difficult to predict traffic conditions. In RMC, once the order is placed, it is placed. It cannot be cancelled. Sometimes our clients tell us to cancel orders because some unprecedented problems have surfaced at their end. As dealers we have to manage these challenges.´
Says Amod Tirodkar, Director, Bakul ´At times, contractors do not get the result they want and then they immediately start blaming the RMC manufacturer. They start suspecting everything right from cement quantity to mixing efficiency. But the fact of the matter is that mostly it is the fault of the pouring process; whether the honey-combing process went ahead smoothly or the contractor uses the vibrator, etc. All this will impact the quality of the end product. An RMC company cannot be held responsible for this.´
So what is the remedy? Amod says ´The overall level of expertise has to improve a lot.´ According to Mandhania, Director of Ashtech (India), a leading supplier of RMC, one has ensure that the deliveries are made on time and that the material is poured on schedule, irrespective of hassles such as traffic or roadblocks. Mandhania says, ´The system must be robust enough to absorb and respond to any issue that can pop up on the fly. We have 74 transit mixers and 24 pumps. We follow a process of sending a questionnaire to our consumer that asks for all the details including the peak requirement for the material. Based on this, we design equipment. That determines if there are going to be two steps every day for one site, so a minimum of two pumps and seven transit mixers are required, and that too, if the site is close. But if the same site is far away, I will need 12 transit mixers. So having a complete understanding of the customer`s requirement and a solid contingency plan in place is key in this business.´
Plant & machinery
Says Prabir Ray, ´Today we have international vendors for batching plants, transit mixers, and concrete pumps apart from the indigenous vendors who have products that match international players; however, there is a gap in the industry for dedicated organised players working in each area of operation to enhance the delivery standard and improve the ecosystem. Going forward, we expect exclusive organised players with assets and knowledge specificity in each areas of operation to join the sector, as it has happened in the developed countries.´
Speaking about the potential in the hiring segment for the concrete equipment, Rajesh Kawoor, Vice President (Concrete Business), Universal Construction Machinery & Equipment states, ´There is huge potential especially for concrete pumps and transit mixers in the hiring segment. In matured overseas markets, the major buyers of RMC equipment is from the hiring sector, whereas in India, it´s the other way around. But now the trend is picking up because in the last couple of years, we have seen a lot of hiring companies showing interest. Even small players are also trying to invest money in the hiring sector.´
Rajesh Kawoor also points out new developments. ´Lots of entrepreneurs are entering the RMC market. The trend is on the rise because recently, we have seen many RMC players coming into Tier 2 and Tier 3 cities whereas half a decade ago, there were only big players there. These plants basically cater to local demand. But the problem for them is the existing tax structure. The government needs to come out with some incentive schemes, especially for small entrepreneurs who are willing to put up small RMC plants.´
What is noteworthy is the innovative approach some of the major cement manufacturers have taken; they has already started diversifying their product bouquet with value-added products in the form of a variety of performance and application-based concretes that further improve the quality and durability of a structure or the end product. Some have even come up with unique product offerings that enable customers to order ready mix concrete in small quantities. This innovative approach is appreciated by many a customer and will further augment the growth of the RMC industry.
Hassles in Supplying RMC
- Supply in crowded areas and No Entry zones.
- Setting up of pumps` supply line and unloading the transit mixer in narrow lanes.
- Assessing the quantity and deciding the quantity of the last transit mixer.
- Planning in advance the day and night supply plans of pumping and dumping. Delay at one site, for any reason, will change the schedule of the entire line.
- The regular repairs and maintenance of the plant, pump and transit mixer during peak season.
- The coordination and timing of dispatch of the transit mixer from the plant and pumping at the site.
- The lead / distance of the site from the plant.
You may like
-
Double Tap to Go Green
-
15th Cement EXPO to be held in March 2025 in Hyderabad
-
14th Cement EXPO
-
Vinita Singhania receives Lifetime Achievement Award at the 7th Indian Cement Review Awards
-
Increasing Use of Supplementary Cementitious Materials
-
Indian Cement Review Touts Decarbonisation Mantra & Awards Growth
Economy & Market
Walplast Expands HomeSure MasterTouch Line
It is a high-quality yet affordable wall paint
Published
2 weeks agoon
February 13, 2025By
admin
Walplast Products, a leading manufacturer of building and construction materials, has unveiled the expansion of its esteemed HomeSure MasterTouch portfolio with the launch of the new HomeSure MasterTouch Lush (Interior & Exterior Emulsion) and HomeSure MasterTouch Prime (Interior & Exterior Primer). These new offerings are strategically positioned as high-quality, yet affordable, high-performance solutions designed to enable individuals to achieve their dream of beautiful homes and “Elevating Lifestyles” (Raho Shaan Se).
The HomeSure MasterTouch Lush Interior Emulsion is a high-quality yet affordable wall paint that delivers best-in-class coverage and an aesthetically appealing, durable finish. Formulated with premium pigments and acrylic binders, it ensures excellent coverage, colour retention, and resistance to fungus, making it an ideal choice for homeowners seeking durability and value. Meanwhile, the HomeSure MasterTouch Lush Exterior Emulsion is specifically engineered to withstand varying weather conditions, particularly in regions with frequent rain and moderate humidity. With strong adhesion and UV-resistant properties, it protects exterior walls against algae growth and black spots while maintaining an elegant matte appearance.
Adding to its comprehensive range, Walplast introduces the HomeSure MasterTouch Prime Interior and Exterior Primers, offering superior adhesion, excellent whiteness, and long-lasting durability. These primers enhance the topcoat application, ensuring a flawless, smooth finish for both interior and exterior surfaces. Engineered with excellent workability and eco-friendly attributes, the primers are free from heavy metals, low VOC (Volatile Organic Compounds), and protect against algae and fungus, making them a reliable base for any painting project.
“At Walplast, we are committed to providing innovative and accessible solutions that enhance the beauty and longevity of homes. The HomeSure MasterTouch range is designed with the modern homeowner in mind—delivering affordability without compromising on quality. Our focus is to empower individuals to bring their dream homes to life with reliable and superior products,” said Kaushal Mehta, Managing Director of Walplast.
Aniruddha Sinha, Senior Vice President Marketing, CSR, and Business Head – P2P Division, Walplast added, “The HomeSure MasterTouch Lush and Prime range align with our vision of offering peace of mind to customers with durable, aesthetic, and affordable solutions for every home. The “Elevate your lifestyle” reflects our belief that everyone deserves to live in a home they take pride in. With this launch, we continue our mission of enabling dreams of beautiful homes for all.”
The newly launched products will be available across key markets, including Maharashtra, Rajasthan, Gujarat, Uttar Pradesh, Madhya Pradesh, Jharkhand, and Chhattisgarh. The HomeSure MasterTouch portfolio also includes premium emulsions such as Bloom and Vivid, as well as a premium primer, catering to diverse customer needs in the construction and home improvement sectors.
Walplast’s HomeSure portfolio encompasses a comprehensive range of construction solutions, including Wall Putty, Tile Adhesives, Gypsum-based products, Construction Chemicals, AAC blocks, and more. With a robust network of over 800 active distributors, 6000 dealers, and more than 65,000 influencers, the HomeSure division continues to be the preferred choice in the construction ecosystem, reinforcing Walplast’s position as an industry leader.

Carbon Capture, Utilisation, and Storage (CCUS) is crucial for reducing emissions in the cement industry. Kanika Mathur explores how despite the challenges such as high costs and infrastructure limitations, CCUS offers a promising pathway to achieve net-zero emissions and supports the industry’s sustainability goals.
The cement industry is one of the largest contributors to global CO2 emissions, accounting for approximately seven to eight per cent of total anthropogenic carbon dioxide released into the atmosphere. As the world moves towards stringent decarbonisation goals, the cement sector faces mounting pressure to adopt sustainable solutions that minimise its carbon footprint. Among the various strategies being explored, Carbon Capture, Utilisation, and Storage (CCUS) has emerged as one of the most promising approaches to mitigating emissions while maintaining production efficiency. This article delves into the challenges, opportunities, and strategic considerations surrounding CCUS
in the cement industry and its role in achieving net-zero emissions.
Understanding CCUS and Its Relevance to Cement Manufacturing
Carbon Capture, Utilisation, and Storage (CCUS) is an advanced technological process designed to capture carbon dioxide emissions from industrial sources before they are released into the atmosphere. The captured CO2 can then be either utilised in various applications or permanently stored underground to prevent its contribution to climate change.
Rajesh Kumar Nayma, Associate General Manager – Environment and Sustainability, Wonder Cement says, “CCUS is indispensable for achieving Net Zero emissions in the cement industry. Even with 100 per cent electrification of kilns and renewable energy utilisation, CO2 emissions from limestone calcination—a key raw material—remain unavoidable. The cement industry is a major contributor to
GHG emissions, making CCUS critical for sustainability. Integrating CCUS into plant operations ensures significant reductions in carbon emissions, supporting the industry’s Net Zero goals. This transformative technology will also play a vital role in combating climate change and aligning with global sustainability standards.”
The relevance of CCUS in cement manufacturing stems from the inherent emissions produced during the calcination of limestone, a process that accounts for nearly 60 per cent of total CO2 emissions in cement plants. Unlike other industries where CO2 emissions result primarily from fuel combustion, cement production generates a significant portion of its emissions as an unavoidable byproduct. This makes CCUS a particularly attractive solution for the sector, as it offers a pathway to drastically cut emissions without requiring a complete overhaul of existing production processes.
According to a Niti Ayog report from 2022, the adverse climatic effects of a rise in GHG emissions and global temperatures rises are well established and proven, and India too has not been spared from adverse climatic events. As a signatory of the Paris Agreement 2015, India has committed to reducing emissions by 50 per cent by the year 2050 and reaching net zero by 2070. Given the sectoral composition and sources of CO2 emissions in India, CCUS will have an important and integral role to play in ensuring India meets its stated climate goals, through the deep decarbonisation of energy and CO2 emission intensive industries such as thermal power generation, steel, cement, oil & gas refining, and petrochemicals. CCUS can enable the production of clean products while utilising our rich endowments of coal, reducing imports and thus leading to an Indian economy. CCUS also has an important role to play in enabling sunrise sectors such as coal gasification and the nascent hydrogen economy in India.
The report also states that India’s current cement production capacity is about 550 mtpa, implying capacity utilisation of about 50 per cent only. While India accounts for 8 per cent of global cement capacity, India’s per capita cement consumption is only 235 kg, and significantly low compared to the world average of 500 kg per capita, and China’s per capita consumption of around 1700 kg per capita. It is expected that domestic demand, capacity utilisation and per capita cement consumption will increase in the next decade, driven by robust demand from rapid industrialisation and urbanisation, as well as the Central Government’s continued focus on highway expansions, investment in smart cities, Pradhan Mantri Awas Yojana (PMAY), as well as several state-level schemes.
Key Challenges in Integrating CCUS in Cement Plants Spatial Constraints and Infrastructure Limitations
One of the biggest challenges in integrating CCUS into existing cement manufacturing facilities is space availability. Most cement plants were designed decades ago without any consideration for carbon capture systems, making retrofitting a complex and costly endeavour. Many facilities are already operating at full capacity with limited available space, and incorporating additional carbon capture equipment requires significant modifications.
“The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter” says Nathan Ashcroft, Carbon Director, Stantec.
High Capital and Operational Costs CCUS technologies are still in the early stages of large-scale deployment, and the costs associated with implementation remain a significant barrier. Capturing, transporting, and storing CO2 requires substantial capital investment and increases operational expenses. Many cement manufacturers, especially in developing economies, struggle to justify these costs without clear financial incentives or government support.
Regulatory and Policy Hurdles The regulatory landscape for CCUS varies from region to region, and in many cases, clear guidelines and incentives for deployment are lacking. Establishing a robust framework for CO2 storage and transport infrastructure is crucial for widespread CCUS adoption, but many countries are still in the process of developing these policies.
Waste Heat Recovery and Energy Optimisation in CCUS Implementation
CCUS technologies require significant energy inputs, primarily for CO2 capture and compression. One way to offset these energy demands is through the integration of waste heat recovery (WHR) systems. Cement plants operate at high temperatures, and excess heat can be captured and converted into usable energy, thereby reducing the additional power required for CCUS. By effectively utilizing waste heat, cement manufacturers can lower the overall cost of carbon capture and improve the economic feasibility of CCUS projects.
Another critical factor in optimising CCUS efficiency is pre-treatment of flue gases. Before CO2 can be captured, flue gas streams must be purified and cleaned to remove particulates and impurities. This additional processing can lead to better capture efficiency and lower operational costs, ensuring that cement plants can maximise the benefits of CCUS.
Opportunities for Utilising Captured CO2 in the Cement Sector
While storage remains the most common method of handling captured CO2, the utilising aspect presents an exciting opportunity for the cement industry. Some of the most promising applications include:
Carbonation in Concrete Production
CO2 can be injected into fresh concrete during mixing, where it reacts with calcium compounds to form solid carbonates. This process not only locks away CO2 permanently but also enhances the compressive strength of concrete, reducing the need for additional cement.
Enhanced Oil Recovery (EOR) and Industrial Applications
Captured CO2 can be used in enhanced oil recovery (EOR), where it is injected into underground oil reservoirs to improve extraction efficiency. Additionally, certain industrial processes, such as urea production and synthetic fuel manufacturing, can use CO2 as a raw material, creating economic opportunities for cement producers.
Developing Industrial Hubs for CO2 Utilisation
By co-locating cement plants with other industrial facilities that require CO2, manufacturers can create synergies that make CCUS more economically viable. Industrial hubs that facilitate CO2 trading and re-use across multiple sectors can help cement producers monetise their captured carbon, improving the financial feasibility of CCUS projects.
Strategic Considerations for Large-Scale CCUS Adoption Early-Stage Planning and Feasibility Assessments
Cement manufacturers looking to integrate CCUS should begin with comprehensive feasibility studies to assess site-specific constraints, potential CO2 storage locations, and infrastructure requirements. A phased implementation strategy, starting with pilot projects before full-scale deployment, can help mitigate risks and optimise
system performance.
Neelam Pandey Pathak, Founder and CEO, Social Bay Consulting and Rozgar Dhaba says, “Carbon Capture, Utilisation and Storage (CCUS) has emerged as a transformative technology that holds the potential to revolutionise cement manufacturing by addressing its carbon footprint while supporting global sustainability goals. CCUS has the potential to be a game-changer for the cement industry, which accounts for about seven to eight per cent of global CO2 emissions. It addresses one of the sector’s most significant challenges—emissions from clinker production. By capturing CO2 at the source and either storing it or repurposing it into value-added products, CCUS not only reduces
the carbon footprint but also creates new economic opportunities.”
Government Incentives and Policy Support
For CCUS to achieve widespread adoption, governments must play a crucial role in providing financial incentives, tax credits, and regulatory frameworks that support carbon capture initiatives. Policies such as carbon pricing, emission reduction credits, and direct subsidies for CCUS infrastructure can make these projects more economically viable for cement manufacturers.
Neeti Mahajan, Consultant, E&Y India says, “With new regulatory requirements coming in, like SEBI’s Business Responsibility and Sustainability Reporting for the top 1000 listed companies, value chain disclosures for the top 250 listed companies, and global frameworks to reduce emissions from the cement industry – this can send stakeholders into a state of uncertainty and unnecessary panic leading to a semi-market disruption. To avoid this, communication on technologies like carbon capture utilisation and storage (CCUS), and other innovative tech technologies which will pave the way for the cement industry, is essential. Annual reports, sustainability reports, the BRSR disclosure, and other broad forms of communication in the public domain, apart from continuous stakeholder engagement internally to a company, can go a long way in redefining a rather traditional industry.”
The Role of Global Collaborations in Scaling CCUS
International collaborations will be essential in driving CCUS adoption at scale. Countries that have made significant progress in CCUS, such as Canada, Norway, and the U.S., offer valuable insights and technological expertise that can benefit emerging markets. Establishing partnerships between governments, industry players, and research institutions can help accelerate technological advancements and facilitate knowledge transfer.
Raj Bagri, CEO, Kapture, says “The cement industry can leverage CCUS to capture process and fuel emissions and by using byproducts to replace existing carbon intensive products like aggregate filler or Portland Cement.”
Organisations like the Carbon Capture Knowledge Centre in Saskatchewan provide training programs and workshops that can assist cement manufacturers in understanding CCUS implementation. Additionally, global symposiums and industry conferences provide platforms for stakeholders to exchange ideas and explore collaborative opportunities.
According to a Statista report from September 2024, Carbon capture and storage (CCS) is seen by many experts as a vital tool in combating climate change. CCS technologies are considered especially important for hard-to-abate industries that cannot be easily replaced by electrification, such as oil and gas, iron and steel, and cement and refining. However, CCS is still very much in its infancy, capturing just 0.1 per cent of global CO2 emissions per year. The industry now faces enormous challenges to reach the one billion metric tons needing to be captured and stored by 2030 and live up to the hype.
The capture capacity of operational CCS facilities worldwide increased from 28 MtCO2 per year in 2014 to around 50 MtCO2 in 2024. Meanwhile, the capacity of CCS facilities under development or in construction has risen to more than 300 MtCO2 per year. As of 2024, the United States had the largest number of CCS projects in the pipeline, by far, with 231 across various stages of development, 17 of which were operational. The recent expansion of CCS has been driven by developments in global policies and regulations – notably the U.S.’ Inflation Reduction Act (IRA) – that have made the technology more attractive to investors. This has seen global investment in CCS more than quadruple since 2020, to roughly $ 11 billion in 2023.
The Future of CCUS in the Cement Industry
As technology advances and costs continue to decline, CCUS is expected to play a crucial role in the cement industry’s decarbonisation efforts. Innovations such as cryogenic carbon capture and direct air capture (DAC) are emerging as promising alternatives to traditional amine-based systems. These advancements could further enhance the feasibility and efficiency of CCUS in cement manufacturing.
In conclusion, while challenges remain, the integration of CCUS in the cement industry is no longer a question of “if” but “when.” With the right mix of technological innovation, strategic planning, and policy support, CCUS can help the cement sector achieve net zero emissions while maintaining its role as a vital component of global infrastructure development.

ICR explores the Indo-German partnership is driving growth through collaboration in trade, technology, sustainability, and workforce development, with a strong focus on SMEs and innovation. By leveraging each other’s strengths, both nations are fostering industrial modernisation, skill development, and economic resilience for a sustainable future.
The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships.
In a rapidly evolving global economy, strategic international collaborations are more important than ever. One such partnership that continues to gain momentum is between India and Germany. This collaboration spans a wide array of sectors—from trade and technology to sustainability and workforce development—and is already delivering impressive results. The recent First Construction Council webinar, titled ‘Indo-German Partnership: Collaborating for Growth’, provided an extensive look at this vital alliance. Moderated by Rajesh Nath, Managing Director, VDMA India, the session explored the evolution, opportunities, and challenges that define the Indo-German partnership, which saw an impressive $33 billion in bilateral trade in 2023.
From Trade to Technology
The Indo-German relationship has undergone a remarkable transformation over the years, transitioning from basic trade to multifaceted cooperation. Rajesh Nath opened the session by underscoring the dynamic nature of Indo-German trade, with more than 1,800 German companies now operating in India. “Machinery accounts for nearly a third of our bilateral trade,” Nath shared, highlighting sectors such as renewable energy, digitalisation, and green hydrogen as key growth areas for the future.
V.G. Sakthikumar, Managing Director, Schwing Stetter India, reflected on his company’s own journey, which mirrors the broader evolution of the Indo-German partnership. When Schwing Stetter first set up operations in India in 1998, the country was considered a relatively small market. Today, India has become the largest manufacturing hub for Schwing Stetter, with exports flowing to markets in Europe, the U.S., and even China. “Germany trusted India to produce high-quality products at competitive prices, and now, we export machinery back to Germany and America,” said Sakthikumar, underscoring the mutual growth that has defined this partnership.
India’s Industrial Modernisation
Germany has played a pivotal role in India’s industrial modernisation, particularly in advancing manufacturing capabilities. Maanav Goel, Managing Director, Hoffmann Quality Tools India, discussed how the historical and contemporary aspects of Indo-German cooperation have shaped both nations’ industries. “Before 1947, our interactions were largely limited to cultural exchanges,” Goel said, explaining how industrial cooperation became central after India’s independence. “Today, German companies like Hoffmann have developed high-quality tools tailored to industries such as automotive and aerospace.”
Goel also pointed out that German companies have been instrumental in advancing India’s Industry 4.0 ambitions. “Sustainability is not just a cost; it’s an investment,” he added, referring to the energy-efficient and precision-engineered solutions Hoffmann provides to enhance India’s manufacturing sector.
Research, Innovation, and the Role of Technology
Innovation has always been the core of the Indo-German partnership. Anandi Iyer, Director, Fraunhofer Office India, highlighted how research and innovation are driving both countries toward a more sustainable future. As the world’s largest applied research ecosystem, Fraunhofer has introduced technologies ranging from digital twins for manufacturing to waste-to-construction materials, all aimed at improving efficiency and sustainability in Indian industries.
Reflecting on Fraunhofer’s work in India, Iyer noted that India is not just a market for technology, but a hub of entrepreneurship and rapid implementation. “We entered India in 2008, and today we earn over €70 million annually from Indian industry contracts,” she shared. Iyer also stressed the importance of democratising technology, especially for India’s small and medium enterprises (SMEs). “SMEs are crucial to the future of both India and Germany. By creating innovation clusters similar to Germany’s, we can ensure that technology benefits all businesses, big and small,” she said.
Cornerstone of Growth
SMEs are a critical focus in the Indo-German partnership. Manoj Barve, India Head, BVMW, emphasised their importance in both countries. “In Germany, SMEs contribute 55 per cent to GDP and employ 60 per cent of the workforce,” Barve said. “India’s SMEs, which contribute 30 per cent to the country’s GDP, are equally important for job creation and economic growth.”
Barve also discussed the complementary strengths of India and Germany. India’s prowess in IT, coupled with Germany’s engineering expertise, provides a fertile ground for collaboration. “Germany’s advanced technology can support India’s ‘Make in India’ initiative, while India’s cost-effective manufacturing can help Germany tackle its energy-led inflation,” he explained.
Gender diversity was another issue Barve touched upon, pointing out that Germany’s workforce is 62 per cent female, supported by policies such as parental leave and flexible working hours. “India, at 37 per cent, has room to grow in this area,” he added. “Addressing issues like workplace safety and societal norms can help unlock the full potential of Indian women in the workforce.”
Navigating Challenges and Expanding Reach
The webinar also addressed the challenges that SMEs face when attempting to expand internationally. Nitin Pangam, Managing Director, Maeflower Consulting, emphasised the need for deeper market insights and sustained engagement to succeed globally. “SMEs need to understand target markets better, whether it’s leveraging the Inflation Reduction Act in the U.S. or tapping into infrastructure projects in Saudi Arabia,” Pangam said.
He also stressed the importance of government support for SMEs. “Institutions like Invest India and VDMA India play a crucial role in guiding SMEs toward international expansion,” Pangam added, suggesting that India could benefit from models like Enterprise Ireland’s, which helps SMEs navigate global markets.
Shared Responsibility
An often overlooked but vital aspect of Indo-German collaboration is skill development. Schwing Stetter’s Sakthikumar discussed how the company has been proactive in training operators and welders, addressing the significant skills gap in India’s construction machinery sector. “We have partnered with state governments to create training programs that produce highly skilled workers, and some of our welding schools have produced global champions,” he shared.
Iyer also highlighted the potential for India to adopt Germany’s dual education system, which sees 5 per cent of the workforce engaged in training at any given time. “This system can be a model for India, where industry-driven skill programs can help bridge the skills gap and align workers with evolving technologies,” Iyer explained.
Looking to the Future
The future of the Indo-German partnership lies in embracing sustainability, digitalisation, and workforce empowerment. Rajesh Nath summarised the webinar’s discussions, emphasising that sustainability and supply chain resilience will play a defining role in the relationship moving forward. “Leveraging technology and deepening institutional collaboration are key to the future,” Nath concluded, signalling the importance of continued cooperation in these areas.
The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships. As Iyer aptly remarked, “The future is bright, but it requires strategic steps to make SMEs and innovation the engines of growth.”
The Indo-German partnership represents a model of what strategic international cooperation can achieve. By focusing on trade, technology, sustainability, and workforce development, both nations have been able to create a mutually beneficial relationship that drives growth and innovation. As India and Germany move forward, their cooperation will serve as a blueprint for growth in the years to come.

Organisations valuing gender diversity achieve higher profitability

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

Ministry of Steel Organises Chintan Shivir for CPSE leaders

World Cement Association Calls for Industry Action

Organisations valuing gender diversity achieve higher profitability

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

Ministry of Steel Organises Chintan Shivir for CPSE leaders

World Cement Association Calls for Industry Action
Trending News
-
Concrete2 weeks ago
Bangur Cement Launches Premium Product for Solid Bright Homes
-
Concrete2 weeks ago
UltraTech Expands Cement Capacity in West Bengal
-
Uncategorized2 weeks ago
Baldota Group to Set Up Rs 540 Billion Steel Plant in Koppal
-
Concrete3 weeks ago
JK Cement Acquires Majority Stake in Saifco Cement to Expand in J&K