Connect with us

Product development

Mill control using millScan g4

Published

on

Shares

The authors presents an overview of mill vibration analysis and control and then illustrate an actual before and after case comparing mill control using classical techniques versus automate loop control using mill vibration to instantaneously estimate and control mill fill level.

Historically many different signals have been employed in the quest for optimal automatic closed loop mill control. These include mill power, sound, elevator amps, bearing pressure and temperature as a few examples. However, within the last few years, a new technology is emerging that makes all these antiquated techniques obsolete. This new technology is mill control using vibration sensors, analog to digital converters and digital signal processing (DSP) techniques. It will be shown that significant improvements in material throughput, reduced kilo-watt per tonne numbers, improved material quality can all be realised with vibration control.

Bearing housing vs shell -mounted vibe sensors

Presently there are two main ways of monitoring vibration on a ball mill. Taking measurements from the bearing housing or some other fixed position or obtaining vibration signals from the shell of the mill. The MillScan G4 can actually do both. See the block diagram of this system in Figure 1.

Specifically we have found that the signal taken off of the inlet fixed bearing housing yields an excellent indication of the fill level in the inlet chamber or inlet half of a single chamber mill. Similarly, the outlet vibration signal can be used to tell what is going on in the outlet chamber or outlet half of the mill in the case of a single chamber mill. The signals obtained from these fixed locations are an integration of the grinding vibration occurring at a particular half of the mill. This means that we are using the metal support structure to sum all the vibration occurring in a particular half or chamber of the mill in the case where the mill has two chambers. Whereas we have found that the shell signal tends to represent a vertical slice of the fill level in the mill where the sensor is placed on the shell. Hence the least noisy and most stable signals are those taken off of the bearing housings. See Figure 2 as a comparison of bearing housing versus shell vibration.

In figure 2, the shell signal is in blue, the inlet bearing signal is in purple, the recirculation is in orange and feed is shown in pink. However, there are times when bearing vibration signals are not reliable and the shell sensor must be employed instead. This case occurs when the bearing oil pressure and/or oil temperature are not constant over daily hourly operation. Fluctuations in bearing oil temperature will cause the viscosity (thin-ness) of the oil to vary over time. This in turn will cause the acoustic coupling of the vibration taken off of the bearing housing to vary artificially. This problem should be fixed (i.e. oil pump or cooling fan replaced) but if not then the shell based sensor should be employed instead.

Fixed position sensors are able to detect changes to 1/10th of a per cent in fill level accuracy which then equate to +/- 0.01 mA on the 4-20 mA fill level output signal fed back to the control room. The shell based sensors are typically not as accurate but still far superior for mill control than a microphone based system.

Case study JK Lakshmi Cements – Sirohi Cement Mill 2 and 5

Two mills with two compartments each were tested where each mill feeds to latest generation separators. This testing involved 2 mills and two separators. One mill gets normal feed size and another mill gets pre-ground material. The mill dimensions are F 4.6 X 16.0 meters long and F 3.8 X 13.0 meters long. The vibration control sensors were mounted on the feed trunions as shown earlier in this paper. The vibration signal was inserted into a PID in the same place where the mill sound level variable was used before.

Manual operation vs sound level vs vibration

Beginning with manual operation, this control scheme requires constant operator attention to attempt to optimize the variables associated with the mill. In this scenario, the moving loads in the mill and separators are left out of process control. These factors can be moving in different time intervals which make them hard to react to even with a good data historian and an operator’s full attention.

This leads to conservative decisions with respect to feed tonnage in order to greatly ease mill operation. Basically the operator is afraid to push the mill anywhere near its true optimal operation. See Figure 3 as an example. Here a 100- kilowatt difference between the high and low mill power can be observed. With this shift in mill load we can expect more variation in the cement production than the case where the power consumption is more stable

Figure 4 is a comparison of the mill being controlled with a PID with mill sound versus vibration as the control variable. The theory of this control is that once the mill exceeds a maximum sound level it can be controlled automatically. Similarly if the mill sound is less the set point, the feed is decreased. Hence the control loop reacts directly to achieve the desired set point. One of the drawbacks of this operation is that it requires an operator to monitor the system until the sound level has been reached and then you switch to automatic control.

This is due to the fact that the mill must go through a power curve where it ramps up to a peak value initially as the mill fills from empty and then drops down as material causes the balls to move towards the chamber’s center of mass line. Hence the optimal zone is on the right side of this curve. If you tried this optimal point in the control system at start-up, you won’t pass this point and the mill will empty.

This control scheme also has a wide span of operating values for the sound variable. Typically the control system over and undershoots the target due to the slow response of the mill sound signal.

Unlike sound control, vibration control showed a much better ability to adjust to varying mill loading conditions. The system could also be placed in automatic control immediately upon mill start-up.

We found that the vibration signal reacts both to fresh feed and circulating load. We also found that the smaller span and a faster signal response allowed the PID parameters to be shortened such that the control system made changes faster than in the kW/Sound level control case.

Results of running under vibration control

A comparison of results compiled from running for several months under vibration control versus mill sound control is now presented.

Beginning with kilowatts per tonne consumed, it was found that vibration control yielded an average Specific Power Consumption drop of 4.0 per cent and an average tonne per hour (TPH) increase of 3.5 to 4.0 per cent.

Other benefits

In addition to the improvement in mill power operation efficiency, it was also found that for two different products, the average standard deviation dropped by 15 per cent. The silo core strength test standard deviation dropped by over 30 per cent. This means that the produced cement was both closer to the desired target Blaine size and strength metric. This is a result of operating the mill in a more stable manner.

Conclusions

Fill level based upon mill vibration, is a fast repeatable precise signal. We have found it to be less noisy and more indicative of true mill fill level when it was taken off of the bearing housing than on the actual shell of the mill. This is due to the integration of total grinding energy observed at the bearing housing versus a point source measurement taken on the shell.

When using vibration for control, we have observed flat stable process signals such as mill, elevator and separator power. This increased stability allows an operator to comfortably increase the throughput target for the mill while operating at a lower power point on the mill kW power curve. Hence we can produce more material for less power and thereby significantly decrease historical average kW hour per tonne numbers. Additional benefits are that as the mill becomes more consistent in operation (stable), improvements can be observed in -45 ¦ fraction and Blaine cement averages as well as improvements in standard deviations of these signals. Basically the more stable your process becomes, the more material for less power can be produced and with high quality levels.

Significant improvements can be realised with vibration control.

Karl S. Gugel. Ph.D. Director, Digital Control Lab, Inc. K.V. Anjani Kumar. General Manager, LNVT, Chennai

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

Impactful Branding

Published

on

By

Shares

Advertising or branding is never about driving sales. It’s about creating brand awareness and recall. It’s about conveying the core values of your brand to your consumers. In this context, why is branding important for cement companies? As far as the customers are concerned cement is simply cement. It is precisely for this reason that branding, marketing and advertising of cement becomes crucial. Since the customer is unable to differentiate between the shades of grey, the onus of creating this awareness is carried by the brands. That explains the heavy marketing budgets, celebrity-centric commercials, emotion-invoking taglines and campaigns enunciating the many benefits of their offerings.
Marketing strategies of cement companies have undergone gradual transformation owing to the change in consumer behaviour. While TV commercials are high on humour and emotions to establish a fast connect with the customer, social media campaigns are focussed more on capturing the consumer’s attention in an over-crowded virtual world. Branding for cement companies has become a holistic growth strategy with quantifiable results. This has made brands opt for a mix package of traditional and new-age tools, such as social media. However, the hero of every marketing communication is the message, which encapsulates the unique selling points of the product. That after all is crux of the matter here.
While cement companies are effectively using marketing tools to reach out to the consumers, they need to strengthen the four Cs of the branding process – Consumer, Cost, Communication and Convenience. Putting up the right message, at the right time and at the right place for the right kind of customer demographic is of utmost importance in the long run. It is precisely for this reason that regional players are likely to have an upper hand as they rely on local language and cultural references to drive home the point. But modern marketing and branding domain is exponentially growing and it would be an interesting exercise to tabulate and analyse its impact on branding for cement.

Continue Reading

Concrete

Indian cement industry is well known for its energy and natural resource efficiency

Published

on

By

Shares

Dr Hitesh Sukhwal, Deputy General Manager – Environment, Udaipur Cement Works Limited (UCWL) takes us through the multifaceted efforts that the company has undertaken to keep emissions in check with the use of alternative sources of energy and carbon capture technology.

Tell us about the policies of your organisation for the betterment of the environment.
Caring for people is one of the core values of our JK Lakshmi Cement Limited. We strongly believe that we all together can make a difference. In all our units, we have taken measures to reduce carbon footprint, emissions and minimise the use of natural resources. Climate change and sustainable development are major global concerns. As a responsible corporate, we are committed with and doing consistent effort small or big to preserve and enrich the environment in and around our area of operations.
As far as environmental policies are concerned, we are committed to comply with all applicable laws, standards and regulations of regulatory bodies pertaining to the environment. We are consistently making efforts to integrate the environmental concerns into the mainstream of the operations. We are giving thrust upon natural resource conservation like limestone, gypsum, water and energy. We are utilising different kinds of alternative fuels and raw materials. Awareness among the employees and local people on environmental concerns is an integral part of our company. We are adopting best environmental practices aligned with sustainable development goals.
Udaipur Cement Works Limited is a subsidiary of the JK Lakshmi Cement Limited. Since its inception, the company is committed towards boosting sustainability through adopting the latest art of technology designs, resource efficient equipment and various in-house innovations. We are giving thrust upon renewable and clean energy sources for our cement manufacturing. Solar Power and Waste Heat Recovery based power are our key ingredients for total power mix.

What impact does cement production have on the environment? Elaborate the major areas affected.
The major environmental concern areas during cement production are air emissions through point and nonpoint sources due to plant operation and emissions from mining operation, from material transport, carbon emissions through process, transit, noise pollution, vibration during mining, natural resource depletion, loss of biodiversity and change in landscape.
India is the second largest cement producer in the world. The Indian cement industry is well known for its energy and natural resource efficiency worldwide. The Indian cement industry is a frontrunner for implementing significant technology measures to ensure a greener future.
The cement industry is an energy intensive and significant contributor to climate change. Cement production contributes greenhouse gases directly and indirectly into the atmosphere through calcination and use of fossil fuels in an energy form. The industry believes in a circular economy by utilising alternative fuels for making cement. Cement companies are focusing on major areas of energy efficiency by adoption of technology measures, clinker substitution by alternative raw material for cement making, alternative fuels and green and clean energy resources. These all efforts are being done towards environment protection and sustainable future.
Nowadays, almost all cement units have a dry manufacturing process for cement production, only a few exceptions where wet manufacturing processes are in operation. In the dry manufacturing process, water is used only for the purpose of machinery cooling, which is recirculated in a closed loop, thus, no polluted water is generated during the dry manufacturing process.
We should also accept the fact that modern life is impossible without cement. However, through state-of-the-art technology and innovations, it is possible to mitigate all kinds of pollution without harm to the environment and human beings.

Tell us about the impact blended cement creates on the environment and emission rate.
Our country started cement production in 1914. However, it was introduced in the year 1904 at a small scale, earlier. Initially, the manufacturing of cement was only for Ordinary Portland Cement (OPC). In the 1980s, the production of blended cement was introduced by replacing fly ash and blast furnace slag. The production of blended cement increased in the growth period and crossed the 50 per cent in the year 2004.
The manufacturing of blended cement results in substantial savings in the thermal and electrical energy consumption as well as saving of natural resources. The overall consumption of raw materials, fossil fuel such as coal, efficient burning and state-of-the-art technology in cement plants have resulted in the gradual reduction of emission of carbon dioxide (CO2). Later, the production of blended cement was increased in manifolds.
If we think about the growth of blended cement in the past few decades, we can understand how much quantity of , (fly ash and slag) consumed and saved natural resources like limestone and fossil fuel, which were anyhow disposed of and harmed the environment. This is the reason it is called green cement. Reduction in the clinker to cement ratio has the second highest emission reduction potential i.e., 37 per cent. The low carbon roadmap for cement industries can be achieved from blended cement. Portland Pozzolana Cement (PPC), Portland Slag Cement (PSC) and Composite Cement are already approved by the National Agency BIS.
As far as kilogram CO2 per ton of cement emission concerns, Portland Slag Cement (PSC) has a larger potential, other than PPC, Composite Cement etc. for carbon emission reduction. BIS approved 60 per cent slag and 35 per cent clinker in composition of PSC. Thus, clinker per centage is quite less in PSC composition compared to other blended cement. The manufacturing of blended cement directly reduces thermal and process emissions, which contribute high in overall emissions from the cement industry, and this cannot be addressed through adoption of energy efficiency measures.
In the coming times, the cement industry must relook for other blended cement options to achieve a low carbon emissions road map. In near future, availability of fly ash and slag in terms of quality and quantity will be reduced due to various government schemes for low carbon initiatives viz. enhance renewable energy sources, waste to energy plants etc.
Further, it is required to increase awareness among consumers, like individual home builders or large infrastructure projects, to adopt greener alternatives viz. PPC and PSC for more sustainable
resource utilisation.

What are the decarbonising efforts taken by your organisation?
India is the world’s second largest cement producer. Rapid growth of big infrastructure, low-cost housing (Pradhan Mantri Awas Yojna), smart cities project and urbanisation will create cement demand in future. Being an energy intensive industry, we are also focusing upon alternative and renewable energy sources for long-term sustainable business growth for cement production.
Presently, our focus is to improve efficiency of zero carbon electricity generation technology such as waste heat recovery power through process optimisation and by adopting technological innovations in WHR power systems. We are also increasing our capacity for WHR based power and solar power in the near future. Right now, we are sourcing about 50 per cent of our power requirement from clean and renewable energy sources i.e., zero carbon electricity generation technology. Usage of alternative fuel during co-processing in the cement manufacturing process is a viable and sustainable option. In our unit, we are utilising alternative raw material and fuel for reducing carbon emissions. We are also looking forward to green logistics for our product transport in nearby areas.
By reducing clinker – cement ratio, increasing production of PPC and PSC cement, utilisation of alternative raw materials like synthetic gypsum/chemical gypsum, Jarosite generated from other process industries, we can reduce carbon emissions from cement manufacturing process. Further, we are looking forward to generating onsite fossil free electricity generation facilities by increasing the capacity of WHR based power and ground mounted solar energy plants.
We can say energy is the prime requirement of the cement industry and renewable energy is one of the major sources, which provides an opportunity to make a clean, safe and infinite source of power which is affordable for the cement industry.

What are the current programmes run by your organisation for re-building the environment and reducing pollution?
We are working in different ways for environmental aspects. As I said, we strongly believe that we all together can make a difference. We focus on every environmental aspect directly / indirectly related to our operation and surroundings.
If we talk about air pollution in operation, every section of the operational unit is well equipped with state-of-the-art technology-based air pollution control equipment (BagHouse and ESP) to mitigate the dust pollution beyond the compliance standard. We use high class standard PTFE glass fibre filter bags in our bag houses. UCWL has installed the DeNOx system (SNCR) for abatement of NOx pollution within norms. The company has installed a 6 MW capacity Waste Heat Recovery based power plant that utilises waste heat of kiln i.e., green and clean energy source. Also, installed a 14.6 MW capacity solar power system in the form of a renewable energy source.
All material transfer points are equipped with a dust extraction system. Material is stored under a covered shed to avoid secondary fugitive dust emission sources. Finished product is stored in silos. Water spraying system are mounted with material handling point. Road vacuum sweeping machine deployed for housekeeping of paved area.
In mining, have deployed wet drill machine for drilling bore holes. Controlled blasting is carried out with optimum charge using Air Decking Technique with wooden spacers and non-electric detonator (NONEL) for control of noise, fly rock, vibration, and dust emission. No secondary blasting is being done. The boulders are broken by hydraulic rock breaker. Moreover, instead of road transport, we installed Overland Belt Conveying system for crushed limestone transport from mine lease area to cement plant. Thus omit an insignificant amount of greenhouse gas emissions due to material transport, which is otherwise emitted from combustion of fossil fuel in the transport system. All point emission sources (stacks) are well equipped with online continuous emission monitoring system (OCEMS) for measuring parameters like PM, SO2 and NOx for 24×7. OCEMS data are interfaced with SPCB and CPCB servers.
The company has done considerable work upon water conservation and certified at 2.76 times water positive. We installed a digital water flow metre for each abstraction point and digital ground water level recorder for measuring ground water level 24×7. All digital metres and level recorders are monitored by an in-house designed IoT based dashboard. Through this live dashboard, we can assess the impact of rainwater harvesting (RWH) and ground water monitoring.
All points of domestic sewage are well connected with Sewage Treatment Plant (STP) and treated water is being utilised in industrial cooling purposes, green belt development and in dust suppression. Effluent Treatment Plant (ETP) installed for mine’s workshop. Treated water is reused in washing activity. The unit maintains Zero Liquid Discharge (ZLD).
Our unit has done extensive plantations of native and pollution tolerant species in industrial premises and mine lease areas. Moreover, we are not confined to our industrial boundary for plantation. We organised seedling distribution camps in our surrounding areas. We involve our stakeholders, too, for our plantation drive. UCWL has also extended its services under Corporate Social Responsibility for betterment of the environment in its surrounding. We conduct awareness programs for employees and stakeholders. We have banned Single Use Plastic (SUP) in our premises. In our industrial township, we have implemented a solid waste management system for our all households, guest house and bachelor hostel. A complete process of segregated waste (dry and wet) door to door collection systems is well established.

Tell us about the efforts taken by your organisation to better the environment in and around the manufacturing unit.
UCWL has invested capital in various environmental management and protection projects like installed DeNOx (SNCR) system, strengthening green belt development in and out of industrial premises, installed high class pollution control equipment, ground-mounted solar power plant etc.
The company has taken up various energy conservation projects like, installed VFD to reduce power consumption, improve efficiency of WHR power generation by installing additional economiser tubes and AI-based process optimisation systems. Further, we are going to increase WHR power generation capacity under our upcoming expansion project. UCWL promotes rainwater harvesting for augmentation of the ground water resource. Various scientifically based WHR structures are installed in plant premises and mine lease areas. About 80 per cent of present water requirement is being fulfilled by harvested rainwater sourced from Mine’s Pit. We are also looking forward towards green transport (CNG/LNG based), which will drastically reduce carbon footprint.
We are proud to say that JK Lakshmi Cement Limited has a strong leadership and vision for developing an eco-conscious and sustainable role model of our cement business. The company was a pioneer among cement industries of India, which had installed the DeNOx (SNCR) system in its cement plant.

Continue Reading

Concrete

NTPC selects Carbon Clean and Green Power for carbon capture facility

Published

on

By

Shares

Carbon Clean and Green Power International Pvt. Ltd has been chosen by NTPC Energy Technology Research Alliance (NETRA) to establish the carbon capture facility at NTPC Vindhyachal. This facility, which will use a modified tertiary amine to absorb CO2 from the power plant’s flue gas, is intended to capture 20 tonnes of CO2) per day. A catalytic hydrogenation method will eventually be used to mix the CO2 with hydrogen to create 10 tonnes of methanol each day. For NTPC, capturing CO2 from coal-fired power plant flue gas and turning it into methanol is a key area that has the potential to open up new business prospects and revenue streams.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds