Connect with us

Economy & Market

Green initiatives in place

Published

on

Shares

Most cement companies have developed specific initiatives and road maps to reduce their organisational carbon footprint. Then, the major focus areas for c are improving thermal energy efficiency and process technology, optimising fuel composition, including the use of waste as fuel, waste heat recovery, reduction in clinker factor, especially through increased rates of blending and renewable energy.

The importance of greening the entire value chain as one of the vital parts of sustainability initiatives, has picked up momentum which is reflecting the way cement manufacturers and major plant and machinery and auxiliary equipment manufacturers are putting in tireless efforts to integrating sustainability issues, essentially in energy conservation, resource optimisation and environmental planning. The industry which is on top in the Certified Emission Reductions Projects list registered with the Clean Development Mechanism (CDM) of the Kyoto Protocol, has been able to contribute significantly to the eco-friendly use of industrial wastes and thereby, has succeeded in reducing its carbon footprint. No wonder then, that the Indian cement industry is probably one of the most energy- efficient in the world today and some of the plants have thermal and electrical specific energy consumption (SECs) comparable to the best cement plants in the world, resulting in low emission intensities.

According to Sumit Banerjee, Vice-Chairman, Reliance Cement, technological improvement is a key pillar in the cement industry’s drive to reduce emissions levels and energy consumption. Research and development investments have enabled cement producers worldwide to install modern, energy-efficient technology in new, and to some extent, in existing cement plants. New technologies have enabled the increased use of clinker substitutes and alternative fuels in cement production, leading to significant direct (e.g, from limestone decarbonisation and fuel burning) CO2 emissions reductions. Technology developments have also enabled significant indirect emissions reductions, like from electricity use. The Indian cement industry has a comparatively better technology as most of the plants are new and are equipped with the latest technology. Moreover, they have taken various measures to upgrade their old plants and to achieve higher energy efficiency.

Speaking about the initiatives taken by Reliance Cement, Sumit says, "At Reliance Cement, we are committed to sustainable growth. All our cement plants, either in the project phase or in the project development phase, are highly energy- efficient. These plants are designed to use alternative fuel and raw materials (AFR) and are equipped with the waste heat recovery system for power generation. A sustainability roadmap with medium and long- term action plans to adopt various carbon emission reduction levers has also been developed."

"Our stated goal towards sustainability includes minimising breakdowns and achieving MTBF (Mean Time Between Failure) 160, achieving specific power consumption 78 Kwh/t cement, increasing PPC sales and fly ash addition in PPC, slag per cent in PSC; and also increasing alternate fuel substitution and AF substitution, and reducing dependency on the State Electricity Board for power, says BLN Murthy, Director-Works of Bharati Cements. He further adds, "Bharathi Cements has taken an initiative from the project stage itself, to optimise energy. We have installed VFDs for both LT & HT drives for all process fans like pre-heater fan, RABH fan, raw mill fan, coal mill fan, cement mills fans and cooler fans, and also high efficiency fans, low pressure drop cyclones in pre-heater, etc. We also have belt weighers for optimum loading of conveyors to avoid the idle running of equipment, and have provided VFDs whereever fans are operating with less than 75 per cent damper opening."

Bidyut Bhattacharya, Technical Director, Sinoma International Engg Co India, says "The Indian cement industry, over the years, has employed the best available technology for production. Thanks to a high degree of blended cement utilisation, Indian cement producers are at the forefront of fuel and electrical energy consumption on a per tonne-of-product basis. An additional benefit in terms of sustainability is the lower per tonnage of CO2 emission. Stricter regulatory requirements are leading to greener technologies, and they in turn, lead to further energy efficiency."

Says K N Rao, ACC, Director (Energy & Environment), "Our major objectives are to bring down CO2 intensity considerably, become water- positive and biodiversity- positive; reduce the use of natural raw materials and fossil fuels, and ensure that there is no harm done to the environment. ACC is on track as per the stated goals. Only in renewable energy, the progress is not quite upto the mark due to recent changes in the government’s fiscal policy with respect to the wind energy and the economic crisis. ACC is striving hard to increase the renewable energy portifolio in the coming days. A lot of investment has been made in improving energy efficiency by installation of variable speed drives (VSDs). The capacity for water conservation and harvesting is increasing day by day across all the ACC plants. One of our units in Himachal Pradesh will be commissioning a waste heat recovery- based power generating unit of 7.5 MW capacity shortly. We are also planning similar units in other plants in a phased manner."

G Jayaraman, Executive President, Birla Corporation, says, "BCL has taken up the task of reducing its carbon footprint by adapting energy efficiency in all units. BCL was rewarded the carbon emission reduction certificate for 1 lakh tonnes of CO2, and successfully traded on the UNFCCI platform. As a roadmap for the next three years, BCL is focusing on renewal energy, basically solar and biomass power plants." He further adds, "Optimisation of fuel mix is regular practice in all the units which stabilises the fuel feed to the pyro-process. Our coal washery at Satna is under stabilisation to convert low- grade coal to useful coal requirement to the kiln. The reject coal will be utilised for power generation in a CFBC boiler. This step will result in the transformation of waste to energy." Speaking about the challenges in the green initiatives, Rao had this to say, "Many challenges lie ahead of us, especially when it comes to energy. With currency depreciation, fuel costs are spiralling for coal, thus raising the cost of thermal power generation. Quality coal and its availability, availability of quality raw materials like limestone continues to be a concern. What’s more, power shortages have been driving us to set up captive power plants (CPP) to fulfil our energy needs. Then, there is the increased pressure of complying with mandatory energy regulations such as Perform- Achieve- Trade (PAT), where we must meet energy reduction targets and also meet our renewable energy purchase (RPO) obligations. Then, there is the continuous reduction in SEC, which to some extent helps mitigate the rising cost of electricity generation."

According to Shashank Jain, Senior Progarmme Officer, Energy Efficiency (Industry) Shakti, Sustainable Foundation the Indian cement industry has made significant progress in terms of improvement in energy efficiency and productivity. Still, the use of alternate fuel and raw material (AFR) to replace coal for thermal energy needs remains an area where the Indian cement industry is yet to catch up with global benchmarks. Though a few cement plants use large quantities and varieties of AFR in their kilns, on an average, co-processing in the Indian cement industry is less than one per cent, compared to the European average of 40 per cent. As per a Ministry of Environment & Forest (MoEF) estimate, even ten per cent of thermal substitution through the use of AFR in cement kilns, has the potential to reduce the emission by three million tonnes of CO2 per year, which is about 0.2 per cent of emissions from the country in 2007. Sandeep Shrivastava, Head, Environment, Ambuja Cement had this to say: "Right from mining to production to sales and distribution, across our all our units and disciplines, we have been adopting best practices and working constantly to demonstrate our commitment towards sustainability through our actions. That commitment is reflected in strict adherence to our environment, sustainability, OH&S, CSR, climate change mitigation, green procurement and other policies, as well as initiatives." According to him, Ambuja Cement has been adopting best manufacturing practices optimising energy, natural resources and technology.. Sandeep adds, "We ensure a varied and holistic perspective the way we manage our operations. Right from mining to production to sales and distribution, across our all our units and disciplines, we have been adopting best practices and working constantly to demonstrate our commitment towards sustainability through our actions. That commitment is reflected in the strict adherence to our environment, sustainability, OH&S, CSR, climate change mitigation, green procurement and other policies as well as initiatives."

According to Suman Mukherjee, Managing Director and Chief Executive Officer, SDCC û India, the key levers to reduce emission in the Indian cement industry are increased rates of blending leading to a reduction in clinker to cement ratio, increased use of AFR, widespread implementation of WHR, transportation of raw materials through conveyor belt instead of road transport, installation of various VFD/high energy- efficient equipment to reduce SPC. In line with this, a low-carbon technology roadmap for the Indian cement industrywas launched on 25h February 2013, with a targeted estimated emission of 0.35 T CO2/t cement in 2050, about 45 per cent down from its level in 2010. Cement manufacturing process from surface mining/quarrying, more usage of WHR, locating main clinkerisation unit near limestone deposits, transporting clinker through rail, transporting fly ash through pipeline, are a few measures which will help in achieving and sustaining this targets.

"KCP has designed the road map with milestones to achieve the CO2 emissions reductions required for the future. We are also putting in all efforts for shifting from OPC to blended cements. The aim is to increase blended cement percentage from the present 35 to 55 per cent by this year- end and one hundred per cent by 2015," says Dr GVK Prasad, Executive President û Operations, KCP.

Says C K Jain, Unit Head, Vasavadatta Cement, Sedam, which has recently bagged the coveted GreenCo Rating launched by CII-Godrej GBC, "VC has always been a believer of sustainable growth and has taken several initiatives on the ecological front. These initiatives helped in achieving GreenCo certification. However, the missing component was the meticulous system of documentation required for GreenCo certification. The certification system helped us in documenting the initiatives taken. The system presented a challenge that turned into an opportunity for us to record our savings in terms of energy savings, water savings, and GHG emissions mitigation and track the results on a regular basis. The plant has one of the best specific energy consumption figures in the country. VC also adopts a cradle- to- cradle approach to environmental sustainability as recommended by GreenCo. The GreenCo Rating System, the first of its kind in the world, provides a much needed holistic framework to evaluate industries on their environmental performance on these parameters. CII, through an extensive stakeholder consultations and interaction with experts, has developed the guidelines of GreenCo. This rating will act as a milestone for companies pursuing green to assess where they stand and help them in defining the path forward," says KS Venkatagiri, Principal Councellor, CII-Godrej GBC. Says Alok Sanghi, Director, Sanghi Industries, "We use fly ash generated from the thermal power plants and also use waste from steel plants. By manufacturing blended cements, we are adding to the sustainability of the country. We are one of the few companies in the country using the most eco- friendly mining technique. Instead of drilling and blasting, we use surface miners which have near zero pollution and zero dust emission techniques. We operate in the region of Kutch where we face a lot of water scarcity, and we have promoted rain water harvesting there."

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

The primary high-power applications are fans and mills

Published

on

By

Shares

Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.

As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.

How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.

What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.

Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.

Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.

How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.

What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.

Continue Reading

Concrete

We conduct regular internal energy audits

Published

on

By

Shares

Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.

In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.

How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.

What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.

How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.

Continue Reading

Concrete

Digitalisation is pivotal in driving energy efficiency

Published

on

By

Shares

As energy costs continue to dominate the cement industry, efficiency and sustainability are proving to be vital components. MM Rathi, Joint President, Power Management, Shree Cement, explains the company’s long-term strategy is focused on cutting emissions while powering growth with renewable energy solutions.

Energy efficiency has always been a cost-saving lever for the cement industry. Today, it is the backbone of sustainability and competitiveness. Cement manufacturers are under growing pressure to optimise consumption, diversify power sources and align with decarbonisation targets. Shree Cement has been at the forefront of this transformation, significantly scaling up its green power capacity and embedding advanced technologies across operations. In this exclusive conversation, MM Rathi, Joint President – Power Management, Shree Cement, shares insights on the company’s approach to energy efficiency, challenges in brownfield modernisation and long-term strategies for achieving net zero alignment.

What percentage of your total operational cost is attributed to energy consumption?
At Shree Cement, energy is one of the most significant components of production cost, accounting for nearly 30 per cent to 40 per cent of total operational expenses. Within this, thermal energy typically contributes around 20 per cent to 25 per cent, while electrical energy forms about 10 per cent to 15 per cent. The exact share varies depending on factors such as the fuel mix (coal, pet coke or alternative fuels and raw materials), the power source (grid-based or captive like solar, wind or thermal), raw mix quality, and regional fuel and electricity price variations. This makes energy efficiency and the adoption of sustainable power sources a key focus area, both from a cost and sustainability perspective.

How has your company improved energy efficiency over the past five years?
Over the past five years, Shree Cement has consistently invested in enhancing energy efficiency across operations. Our green power capacity, covering wind, solar and Waste Heat Recovery (WHR), has more than doubled from 245 MW in 2020 to 592 MW in 2025. All grinding units are now equipped with biomass firing facilities, reducing dependence on conventional fuels. From the project stage itself, we prioritise efficiency by selecting advanced technologies such as six-stage kilns with integrated WHR, CFD-designed plants, and equipment fitted with VFDs, centrifugal compressors and high-efficiency fans. We also review and upgrade equipment systematically, replacing fans, compressors, blowers, pumps, boilers and turbines with more efficient options. This continuous approach has reduced costs while significantly advancing our sustainability journey.
What technologies or practices have shown the highest energy-saving potential in cement production?
WHR stands out as one of the most effective solutions, offsetting a significant portion of electricity required for clinker production. Hot air recirculation has also proven highly beneficial in reducing heat losses. Additionally, regular energy audits help us identify opportunities for improvement and implement corrective measures in daily operations. Together, these practices play a critical role in optimising energy efficiency and driving sustainable operations.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
The biggest challenge is the significant upfront investment required for upgradation. Retrofitting existing facilities often involves complex civil and structural modifications, which add costs and extend downtime. Integration is another hurdle, as new high-efficiency equipment may not align seamlessly with older kiln systems, fans, mills or automation setups. These factors make the transition in brownfield plants more resource-intensive and time-consuming compared to greenfield projects.

How do you measure and benchmark energy performance across different plants?
We track key performance indicators such as specific heat consumption and specific power consumption for each unit, benchmarking them against internal and external standards. Thermal Substitution Rate (TSR percentage) is another critical metric, measuring the share of alternative fuels in the thermal energy mix. Internally, we benchmark performance across plants to encourage best practice sharing. Externally, we compare against national averages and align with the Bureau of Energy Efficiency’s PAT (Perform, Achieve, Trade) scheme, which sets Specific Energy Consumption (SEC) baselines and targets for cement plants. This multi-layered approach ensures continuous monitoring, improvement, and industry leadership in energy efficiency.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation is pivotal in driving energy efficiency at Shree Cement. IoT sensors integrated with SCADA and DCS systems allow real-time monitoring of parameters like heat consumption and energy use, moving beyond periodic reports. Our digital platforms consolidate plant data, enabling management to compare metrics such as SPC, SHC, kWh per tonne and kcal per kg across units in real time. This visibility supports data-driven decisions, faster corrective actions, and higher operational efficiency.

How do government policies and incentives influence your energy-saving decisions?
Government policies and incentives strongly shape our energy-saving decisions. The Perform, Achieve, Trade (PAT) scheme sets plant-specific SEC targets. Non-compliance incurs penalties, while compliance earns tradable energy-saving certificates. This ensures energy efficiency is both cost-driven and regulatory. Additionally, subsidies and viability gap funding for renewable energy projects in wind, solar and AFR co-processing help reduce payback periods and make energy-saving investments more viable.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
Our long-term strategy aligns energy efficiency with India’s net zero 2070 goals. Key levers include improving efficiency, expanding green electricity, producing more blended cement, and increasing alternative fuel use. Today, more than 60 per cent of our electricity comes from green sources such as solar, wind, and WHR, the highest in India’s cement industry. Our blended cement products, which reduce limestone and fuel consumption, further lower emissions. These products are certified under the GreenPro ecolabel by CII, validating our sustainability practices and environmental standards.

Continue Reading

Trending News