Connect with us

Technology

Evolving boiler technology for multi-fuel firing

Published

on

Shares

Circulating fluidised bed combustion technology offers outstanding fuel-flexibility advantages over conventional combustion systems.

The power sector, which includes captive power generation capacity, has lately seen many changes in policies, in options for sale and purchase of power, in technology, business models and above all, in fuel access structures. Selection of a boiler that is flexible enough to handle these changes without compromising on efficiency is a must.

An investor planning to invest in a mid-sized power project may well be stumped by the plethora of options. Some of the inherent risk factors are as follows:

Development risks

  • Statutory clearances
  • Linkages
  • Financial closure
  • Land and rehabilitation

Construction risks

  • Schedules
  • Cash flow
  • IDC
  • Quality
  • Marketing risks
  • Risk of insufficient revenue

Technical risks

  • Insufficiently proven technology
  • Developer / contractor’s competence and experience in question

Commercial risks

  • Feasibility
  • Project schedule
  • Contractor’s financial strength

Operations and maintenance risks

  • Heat rate guarantees
  • Manpower costs
  • Plant performance

For a power project to succeed, an investor invariably looks at the financial viability of the project. Two factors foremost on his minds are the project cost (comprising the capital cost, interest cost and development expenses) and the operating cost. Based on these, the investor will be able to forecast the cash flow. In a power plant, the operating costs comprise mainly of station heat rate, manpower cost and the cost of consumables.

The investor is of course, concerned about the return on the investments, which is connected with the technical feasibility of the project and the technology being utilised. The return on investment also depends on the guarantees that can be obtained on the project costs and how well one is able to estimate and mitigate the variations. Then again, performance guarantees are far more important than the project cost guarantees, since performance variations can bleed the project financials for the lifetime of the project, which is typically about 20 – 25 years. The IDC and returns accumulate from the guarantee of the schedule that is set for the project, provided it is closely followed.

Based on the risk appetite of the investor and the insight of the funding banks, the project is reviewed for its feasibility and if seen as a profitable venture, further steps are then taken.

In the next phase, the project is awarded to the EPC contracting firm that takes up the entire construction risk. If the EPC contractor is also a technology provider, like a boiler manufacturer in the case of a power plant, then even the technological risk is passed on to the contractor. If the EPC contractor is ready to take up long- term operations and maintenance of the power project, then the O&M risks are also passed on to the contractor. That leaves only the development risk and part of commercial risk. The commercial risk can be further diluted with a financially sound EPC contractor. A legally strong, watertight contract put in place will leave only the development risk. In today’s context of fuel uncertainty, technology plays a vital role, especially when choosing the right boiler.

Following factors are important:

1. Boiler technology for various kinds of biomass fuels.

2. Boiler pressure and temperature.

3. Fuel firing limitations.

4. Boiler efficiency and availability.

Factors affecting boiler design:

1. Physical characteristics of the fuel. This is extremely important if biomass is to be combusted at any time as main or supplementary fuel.

Characteristics that matter are:

a. Size.

b. Bulk density.

c. Flow ability.

2. Chemical constituents are extremely important in case of biomass.

a. Chlorine (elemental chlorine and not chlorides in ash) as, in biomass, it can cause corrosion problems.

b. Alkali content (Na2O+K2O) in ash. This content in fuel can lead to problems like slagging and fouling.

3. Boiler efficiency depends on the moisture content in the fuel. Combustion efficiency depends on the ash content and excess of air. Excess air increases combustion efficiency; however, it also increases dry flue gas losses.

4. NOx generation is a function of temperature, staging of air and excess air percentage.

5. If moisture content in fuel is high, in-bed tubes can be avoided.

Uncertainty regarding availability and reliability of any one type of fuel, stringent emission norms, constraints on firing multiple types of fuels in pulverised coal fired boilers, and the need of additional capital- intensive accessories like coal mill, FGD, etc, has led to the evolving of the Circulating Fluidised Bed Combustion Technology (CFBC).

CFBC is a fuel- flexible technology, which can handle variations in GCV from 1,800- 8,000 kcal/kg, ash 5 per cent-65 per cent, and moisture from 1 per cent-45 per cent. The turbulent bed which is operating at 4-5.5m/s is able to enhance the fuel burn ability by rapid mixing of fuel with hot bed material, resulting in efficient carbon burnout.

Within the CFBC technology itself, there are several options of evolved CFBC technologies with wider multi-fuel firing capability like the following:

Coal

  • Anthracite
  • Bituminous
  • Sub-bituminous
  • Lignite (Neyveli / Kutch / Barmer)
  • High-sulphur coal

Waste coal

  • Washery rejects
  • Char

Petroleum coke (petcoke)

  • Delayed
  • Fluid

Other renewable fuels

  • Sludge
  • Oil pitches
  • Biomass
  • Agro-waste
  • Refused derived fuel

These technologies can easily cater to fuel property ranges of:

  • Moisture upto 60 per cent, e.g. in lignite, peat, sludge.
  • Ash upto 76 per cent, e.g. in washery rejects, char.
  • Sulphur upto 8 per cent, e.g. in lignite, petcoke.
  • Volatiles as low as 1 per cent as in petcoke, washery rejects, char.
  • HHV as low as 1500 Kcal/Kg as found in washery rejects, char, etc.
  • Some factors need to be considered while choosing the right technology.

Compact, economical design and construction

If the boiler design has a lower furnace exit gas velocity and requires significantly less building volume, say by relying on internal recirculation, the design can eliminate J-valves, loop seals, high-pressure blowers, and soot blowers. This makes the boiler compact and economical regarding lifetime costs.

Separation in stages for better bed inventory control

If the design hasan optimal stagewise particle separation system, it will help to provide high solids loading and a uniform furnace temperature profile. The benefits of this include superior combustion efficiency, high operational thermal efficiency, low emissions, low maintenance, low pressure drop, and high turndown, resulting in improved overall plant performance, as well as a particle collection efficiency as high as 99.8 per cent for better inventory control. If the separation technology is of the fit-and-forget type, then it will not require any kind of maintenance like the U-beam type technology.

Performance in varying and low load conditions

With an effective bed inventory and temperature controls through controlled solid recycle rate from MDC to furnace, one can get better performance and from the boiler during varying and low load conditions. This is achieved without affecting the steam parameters and gives a much better turndown ratio without any auxiliary fuel support. Turndown ratios as high as 1:5 can be easily achieved in some designs.

Start -up and shutdown time

Some designs have much lower refractory heat retention as compared to other CFBC designs. This allows for quick start and shutdown of the boiler.

Auxiliary consumption

Boiler designs with gasses leaving the furnace at a high velocity to achieve solid separation, using centrifugal action, generally have higher pressure drops, and thus, a higher auxiliary consumption. Boiler designs with a lower velocity of gases have a comparatively negligible pressure drop and much lower auxiliary consumption.

Availability and lower maintenance level

Maintenance of the boiler is directly related to the quantum of refractory of the boiler design. The boiler design with the least level of thick, uncooled refractory and no hot expansion joints reduces the expense and lost time associated with refractory maintenance.

If the particle separators and super- heater enclosures are constructed entirely of top-supported, gas-tight, all- welded membrane tube walls which do not require hot expansion joints, the lifetime maintenance of the boiler can be minimised substantially.

Some boiler designs ensure that there is no soot formation and a uniform furnace temperature profile is maintained, thereby further reducing maintenance time and improving the performance.

Erosion is a major contributor to maintenance problems in CFBC boilers, usually resulting from high solids loading in the flue gas. The severity of this erosion is exponentially related to the velocity of the flue gas through the system. While some CFBC designs have a particle separator based on an extremely high flue gas velocity to provide the energy needed to efficiently disengage the particles from the flue gas, other designs have particle separators designed to operate efficiently with much lower flue gas velocity (5 to 6 m/s) at full-load operating conditions. By operating at such a low gas velocity, the potential for erosion in these designs is significantly reduced.

CFBC boiler design considerations

Calorific value

The lowest calorific value like washery will call for higher amount of fuel feeding into the bed. The feeders need to be sized for 1:10 turndown to feed low calorific value fuels as well as high calorific value fuels like say petcoke.

Moisture

The furnace cross- section is decided by the maximum flue gas volume generated by respective fuels. In the case of lignite or biomass with high moisture and low calorific value fuel, the flue gas generated will decide the furnace cross-section. In addition to this, the ESP and ID of the fan needs to be sized for handling higher gas volumes.

Ash

Higher ash content in fuels enhances the heat transfer in the furnace and in convection pass. To maintain solids` mass flux in furnace, the excess solids are taken out of the system through a bed ash cooler located beneath the boiler. Hence, for high ash fuels like Indian coal, washery rejects, the number of ash coolers is to be decided based on the high ash fuel. The ESP will see a higher dust loading in Indian coal, hence a higher collection area will be required than when required while firing petcoke or imported coal.

Sulfur content

Imported or Indian coal, lignite, petcoke, all possess sulfur in the order of 0.7, 0.5, 2, 8 per cent in the fuel. In CFB, the sulfur capture is a simple process where adding limestone along with the fuel allows it to calcine and sulphate with sulfur trioxide, which is removed through bed drains. Hence, to capture the maximum amount of sulfur in petcoke, a higher limestone requirement is needed and hence the limestone RAVs will be sized to deliver the required quantity.

With such advantages and flexibility, the CFBC technology in the current climate of fuel volatility, can only be considered a boon.

Vivek Taneja, Head of Business Development, Thermax Limited

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

We consistently push the boundaries of technology

Published

on

By

Shares

Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.

SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.

Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.

How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.

Key features include:

  • High efficiency: Ensures optimal throughput for large volumes of waste.
  • Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
  • Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.

What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:

  • Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
  • Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
  • Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
  • Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.

What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.

This includes:

  • Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
  • Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
  • Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
  • Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.

How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:

  • Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
  • AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
  • Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
  • Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.

What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:

  • AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
  • Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
  • Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
  • Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
  • Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.

(Communication by the management of the company)

Continue Reading

Concrete

FORNNAX Technology lays foundation for a 23-acre facility in Gujarat

Published

on

By

Shares

FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.

Continue Reading

Concrete

Decarbonisation is a focus for our R&D effort

Published

on

By

Shares

Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.

Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.

Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.

The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.

What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.

You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.

The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.

Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds