Connect with us

Technology

Technology for alternative fuel firing

Published

on

Shares

Use of low-grade alternative fuels such as waste coal, tyres, sewage sludge, and biomass fuels (such as wood products, agricultural waste, etc.) in pre-calciners is a feasible option since combustion in pre-calciner takes place at a lower temperature.

India is the second largest cement producer in the world and accounted for over 8 per cent of the global installed capacity as of 2019 with an overall cement production capacity of around 545 MT in FY20. The Indian cement industry is swiftly developing due to the increasing demand of construction sectors, be it housing, commercial, industrial, etc.

Cement manufacturing being a high energy consuming and heavy polluting process accounts for at least 8 per cent of the total emission of greenhouse gases. At the same time, energy-related expenses in the cement sector, mostly on fossil fuels and electricity, account for 30 to 40 per cent of the industry?? cash costs.

Historically, the primary fuel used in cement industry is coal. Recent increases of coal prices in the Indian market again made the cement industry vulnerable to fuel cost. Since then, petroleum coke has been successfully used as fuel and the use alternative fuels in cement kilns is now common and increasing. Although fossil fuels such as coal, petroleum, natural gas, etc. can provide all the energy the world needs for the time being, their finite nature, high prices and most importantly, their damaging effect on the environment underscore the need to develop alternative fuels.

Today?? cement industry becomes more challenging for the following main factors: the lowest production cost and minimum environmental impact. Beyond the cost-reduction benefits of alternative fuels, use of these fuels can contribute greatly to the environmentally sound disposal of waste and to the mitigation of greenhouse-gas emissions (GHG). Therefore, key cement players have started to consider alternative fuels as a lever to improve their contribution to sustainable development and as a key component of corporate social responsibility.

This is certainly a win-win option for both cement industry and the society at large. There is, hence, an urgent need to implement appropriate policies and practices in favor of co-processing in the country so that it can contribute reasonably towards the waste management needs of the country and help industry in substituting alternative resources in the cement manufacturing process. This would require substantial capacity building in the relevant stakeholder community ??particularly the policy makers, authorities, waste generators, facility providers and the cement plants.

Alternative Fuel options available

The range of alternative fuels is extremely wide. Use of low-grade alternative fuels such as waste coal, tyres, sewage sludge, and biomass fuels (such as wood products, agricultural waste, etc.) in pre-calciners is a feasible option since combustion in pre-calciner takes place at a lower temperature. The major Alternative Fuel available to use in India would be MSW (Municipal Solid Waste).

Sewage sludge: In several countries, sewage sludge is used in cement production. The sludge is usually co-fired with coal in pre-dried form. Pre-dried sludge is easier to store, transport and feed. However, it has a high content of SiO2, Al2O3 and Fe2O3 which could affect the quality of cement if excess amounts are used.

Used Tyres: Combustion of whole tyres requires long residence times to obtain complete conversion. In some cement installations, tyres are fired whole, mostly in the rotary kiln. More commonly, they are shredded in a slashing process, producing tyre chunks or chips, and co-fired with coal in the precalciner. They cannot, however, be finely comminuted economically. FLSmidth offers HOTDISC? Combustion Device for high efficient firing of used tyres.

Agricultural Biomass- A largely untapped renewable energy source: The type of biomass utilized by cement plants is highly variable, and is based on the crops that are locally grown/available. For e.g., rice husk, hazelnut shells, coconut husks, corn stover, coffee pods, and palm nut shells are among the many varieties of biomass currently being burned in cement kilns. Biomass fuels are considered carbon neutral because the carbon released during combustion is taken out of the atmosphere by the species during the growth phase.

Major challenges of using agricultural biomass residues include the relatively low calorific value which can cause flame instability, and availability since most of the agricultural residues are seasonal (not available all year round). The flame instability problems could be overcome with lower substitution rates and ability to adjust air flow and flame shape.

Other major Alternative Fuels include waste oil, liquid waste, Plastic, Meat and bone meal, etc.

Benefits of using Alternative Fuels in Cement Production

Cement producers are striving to lower their production costs. One effective method of achieving this end is the use of alternative fuels.

The reduction in emissions to the atmosphere and the positive environmental impact it holds is a major benefit of Alternative Fuel firing. In pre-calciners where kiln exhaust gases pass through, the NOx emissions are much reduced due to reburn reactions. Also, there is an increased net global reduction in CO2 emissions when waste is combusted in the cement kiln systems as opposed to dedicated incinerators, resulting a reduction in penalties.

Key considerations and challenges for co-processing Alternative Fuels

The potential benefits of burning alternative fuels at cement plants are numerous. However, the contrary is possible where poor planning results in higher emissions or when they are not put to their best use with best practices.

Alternative fuels used in cement manufacturing have different characteristics compared to the conventional fuels. Switching fuels present several challenges that must be addressed in-order to achieve successful application. The type of fuel used can introduce some material components which can interfere with the chemistry of the cement materials as well as affect the operation of the system. The use of a type of fuel is hence subject to the constraints imposed by any effect on cement quality, refractory life, gas and material flow or potential emissions to the atmosphere.

Poor heat distribution, unstable pre-calciner operation, blockages in the preheater cyclones, build-ups in the kiln riser ducts, higher emissions and dusty kilns are some of the major challenges.

FLSmidth Alternative Fuel Firing Technology

Introducing alternative fuels has an impact across the plant. The materials can have totally different characteristics from fossil fuels. They can be sticky, fluffy, moist, and fluctuating in size and quality or you may need to switch between different types of fuel with very different characteristic due to governed by availability. They will burn differently, have a different reaction in the kiln and may require you to take other actions to ensure consistent clinker quality. There are a lot of variables at play ??which is why you need an experienced partner on your side.

With over 25 years of direct alternative fuels experience and more than 130 years in the cement industry, FLSmidth? offers a range of products to enable Cement Manufacturers to increase their substitution of Alternative Fuels.

JETFLEX? Burner

Cement kilns have several characteristics which make them ideal installations for disposal of waste through co-processing in an environmentally sound manner:

– High temperatures

– Long residence time

– Oxidizing atmosphere

– High thermal inertia

– Alkaline environment

– Ash retention in clinker

FLSmidth?? JETFLEX? Burner is a highly flexible kiln burner, designed to produce the best flame shape and lowest NOx emissions for various fuel types and operating conditions. It fires rotary kilns with pulverized coal or coke, oil, natural gas, or any mixture of these fuels. Alternative fuel firing of plastic chips, wood chips and sewage sludge can also occur through the same common fuel channel to improve heat and power consumption and minimize cold airflow entering from the fuel transport.

JETFLEX? PLUS Burner

For optimum combustion flexibility, our JETFLEX PLUS Burner offers superior combustion of cost-effective grade fuels, complete flame-forming control and increased fuel retention time. The two design features that characterize the JETFLEX PLUS Burner model are individually rotatable jet air nozzles and a retractable center pipe for alternative fuel firing.

The individual rotatable nozzles also enable fuel lift configuration. This is used with solid alternative fuels to increase fuel retention time in the flame. The result is less fuel drop-out, improved combustion, and improved clinker quality. The swirler is the main mechanism for shaping the flame during start-up and daily operation.

The JETFLEX PLUS burner offers retraction of the swirler and central duct. In combination with the axial air nozzles, this enables a significant drop in fuel velocity in front of the burner. This feature strongly increases the fuel retention time in the flame and enables early ignition of low grade fuels. In combination with the fuel lift configuration as noted above, spillage to the charge is minimised. This allows the burner to contribute to superior flame and clinker quality control as well as a high alternative fuel substitution.

HOTDISC? Combustion Device

The HOTDISC solution allows cement producers to substitute coal or other fossil fuels with a wide range of alternative fuels. The HOTDISC is a flagship solution for FLSmidth?? MissionZero that helps cement producers take an important step toward zero-emission cement plants by 2030. Launched in 2004 and over 35 installations worldwide, the HOTDISC Combustion Devices has already firmly established itself as an attractive technology to accelerate cement plants??transition toward alternative fuels.

From wet powders to solid waste up to 1.2 metres in diameter, our HOTDISC Combustion Device can burn them all. The waste to energy process eliminates the need for expensive shredding and gives you the flexibility to select the most economical choice from a wide range of alternative fuel options. The HOTDISC Combustion Device is designed to achieve a calciner fuel substitution rate of up to 80%, although results vary significantly depending on specific plant conditions.

As an integrated part of your kiln system, the HOTDISC Combustion Device is added onto the calciner and functions as a slow-moving disc furnace. When alternative fuel, preheated raw meal and tertiary air are fed into the HOTDISC, it produces combustion gases, partly calcined meal and combustion residues. These are then processed in the calciner alongside the other streams entering it. The result is calcined meal ready for the kiln and well-controlled emissions.

Alternative fuels are introduced onto the slowly rotating disc and they start to burn in fully-oxidising conditions when they meet the hot tertiary air. The burning fuel is transported approximately 270? on the disc until it reaches the scraper, where the remaining ash and partly calcined materials are discharged into the riser duct. Heavy combustion residues fall into the kiln inlet, while lighter fragments and combustion gases move up into the calciner.

HOTDISC-S? is a recently developed version of HOTDISC specifically to cater the needs of customers with SLC type calciners, hence enabling them to achieve Alternative Fuel firing. Two of these devices have been commissioned globally and running successfully.

Low NOx Calciner

With a goal to optimise production costs, FLSmidth?? Low NOx Calciner has been enhanced for operational stability, availability and combustion efficiency.

NOX regulations are continuously being tightened around the world. Meeting NOx emissions limits is therefore a key demand for cement producers, not only because NOx-related issues, such as smog pollution, have a direct impact on the local society, but also because your plant?? license to operate is directly linked to its NOx emissions.

Multiple fuel inlets are given to ensure optimal distribution between the kiln gases and the fuel. To achieve the best distribution between the kiln gases and the fuel, there are multiple inlets (four or six, depending on plant size). Better fuel distribution provides optimal mixing, which gives the highest average cross-sectional temperature without any build-up problems.

The Low NOX Calciner has the flexibility to burn almost any type of fuel. This includes traditional fuels, including coal and natural gas, more difficult-to-burn fuels, such as petcoke, and most solid and liquid waste fuels. These fuel types are burned while achieving low NOx and CO emissions.Primary Mitigation

Another simple solution FLSmidth? provides for reducing the NOx emissions in the existing plants is the Primary mitigation NOx reduction through calciner design changes. These are basically layout changes to create one firing location, one meal split, one air stream entering tangentially to the calciner and creating “hot zone??and ??eduction zone?? The plant system is studied and appropriate modifications are recommended. For even lower NOx emissions, FLSmidth? provides SNCR system as an add-on solution.

Kiln Gas By-pass System

Kiln gas bypass systems have traditionally only been used in regions where the local raw materials are naturally high in chloride, sulfur or alkalis. The growing use of alternative fuels and other materials is also increasing the input of chloride to kiln systems to the point that may require a bypass to maintain process stability or product quality. FLSmidth has extensive experience with the design and use of kiln bypass systems.

Main features:

– Quench chamber with dual layer dip tube

– Quench air inlet flap valve

– Control scheme for maximum stability

– Special lining design in transition pipe section

– Constant force support system

– Multiple layout possibilities

While the fundamental principles of a bypass system have not changed, state-of-the-art technology and design tools have been incorporated to improve bypass efficiency and maximise reliability. Most projects today will at least have the space for a future small chloride bypass (less than 10%) with respect to use of alternative fuels and materials.

Conclusion

The co-processing of waste as AFR disposes the waste completely and thereby eliminates the societal concerns associated with it. In Indian cement industry, if these initiatives could increase thermal substitution to the level of European countries, the cement industry can reduce its GHG emission by a significant amount, impacting the overall country?? GHG emission.

The type of fuel used in cement production is subject to the constraints imposed by its effects on cement quality, refractory life, emissions to the atmosphere, etc. and hence requires proper study and planning by specialists before implementation.

To reduce fuel cost in cement industry, globally, waste materials and low-grade fuels are co processed extensively as alternative fuels or energy sources. India still has a long way to go in ensuring greater substitution of AFRs, resulting in sizable conservation of natural materials and fossil fuels and to make the most out of the technology available for the same.

Author:

Gopika Krishnakumar

Product Line Manager

Cement Industry/Pyro Technology

FLSmidth

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Technology

M.E. Energy Bags Rs 490 Mn Order for Waste Heat Recovery Project

Second major EPC contract from Ferro Alloys sector strengthens company’s growth

Published

on

By

Shares

M.E. Energy Pvt Ltd, a wholly owned subsidiary of Kilburn Engineering Ltd and a leading Indian engineering company specialising in energy recovery and cost reduction, has secured its second consecutive major order worth Rs 490 million in the Ferro Alloys sector. The order covers the Engineering, Procurement and Construction (EPC) of a 12 MW Waste Heat Recovery Based Power Plant (WHRPP).

This repeat order underscores the Ferro Alloys industry’s confidence in M.E. Energy’s expertise in delivering efficient and sustainable energy solutions for high-temperature process industries. The project aims to enhance energy efficiency and reduce carbon emissions by converting waste heat into clean power.

“Securing another project in the Ferro Alloys segment reinforces our strong technical credibility. It’s a proud moment as we continue helping our clients achieve sustainability and cost efficiency through innovative waste heat recovery systems,” said K. Vijaysanker Kartha, Managing Director, M.E. Energy Pvt Ltd.

“M.E. Energy’s expansion into sectors such as cement and ferro alloys is yielding solid results. We remain confident of sustained success as we deepen our presence in steel and carbon black industries. These achievements reaffirm our focus on innovation, technology, and energy efficiency,” added Amritanshu Khaitan, Director, Kilburn Engineering Ltd

With this latest order, M.E. Energy has already surpassed its total external order bookings from the previous financial year, recording Rs 138 crore so far in FY26. The company anticipates further growth in the second half, supported by a robust project pipeline and the rising adoption of waste heat recovery technologies across industries.

The development marks continued momentum towards FY27, strengthening M.E. Energy’s position as a leading player in industrial energy optimisation.

Continue Reading

Trending News