Technology
Technology for alternative fuel firing
Published
4 years agoon
By
admin
Use of low-grade alternative fuels such as waste coal, tyres, sewage sludge, and biomass fuels (such as wood products, agricultural waste, etc.) in pre-calciners is a feasible option since combustion in pre-calciner takes place at a lower temperature.
India is the second largest cement producer in the world and accounted for over 8 per cent of the global installed capacity as of 2019 with an overall cement production capacity of around 545 MT in FY20. The Indian cement industry is swiftly developing due to the increasing demand of construction sectors, be it housing, commercial, industrial, etc.
Cement manufacturing being a high energy consuming and heavy polluting process accounts for at least 8 per cent of the total emission of greenhouse gases. At the same time, energy-related expenses in the cement sector, mostly on fossil fuels and electricity, account for 30 to 40 per cent of the industry?? cash costs.
Historically, the primary fuel used in cement industry is coal. Recent increases of coal prices in the Indian market again made the cement industry vulnerable to fuel cost. Since then, petroleum coke has been successfully used as fuel and the use alternative fuels in cement kilns is now common and increasing. Although fossil fuels such as coal, petroleum, natural gas, etc. can provide all the energy the world needs for the time being, their finite nature, high prices and most importantly, their damaging effect on the environment underscore the need to develop alternative fuels.
Today?? cement industry becomes more challenging for the following main factors: the lowest production cost and minimum environmental impact. Beyond the cost-reduction benefits of alternative fuels, use of these fuels can contribute greatly to the environmentally sound disposal of waste and to the mitigation of greenhouse-gas emissions (GHG). Therefore, key cement players have started to consider alternative fuels as a lever to improve their contribution to sustainable development and as a key component of corporate social responsibility.
This is certainly a win-win option for both cement industry and the society at large. There is, hence, an urgent need to implement appropriate policies and practices in favor of co-processing in the country so that it can contribute reasonably towards the waste management needs of the country and help industry in substituting alternative resources in the cement manufacturing process. This would require substantial capacity building in the relevant stakeholder community ??particularly the policy makers, authorities, waste generators, facility providers and the cement plants.
Alternative Fuel options available
The range of alternative fuels is extremely wide. Use of low-grade alternative fuels such as waste coal, tyres, sewage sludge, and biomass fuels (such as wood products, agricultural waste, etc.) in pre-calciners is a feasible option since combustion in pre-calciner takes place at a lower temperature. The major Alternative Fuel available to use in India would be MSW (Municipal Solid Waste).
Sewage sludge: In several countries, sewage sludge is used in cement production. The sludge is usually co-fired with coal in pre-dried form. Pre-dried sludge is easier to store, transport and feed. However, it has a high content of SiO2, Al2O3 and Fe2O3 which could affect the quality of cement if excess amounts are used.
Used Tyres: Combustion of whole tyres requires long residence times to obtain complete conversion. In some cement installations, tyres are fired whole, mostly in the rotary kiln. More commonly, they are shredded in a slashing process, producing tyre chunks or chips, and co-fired with coal in the precalciner. They cannot, however, be finely comminuted economically. FLSmidth offers HOTDISC? Combustion Device for high efficient firing of used tyres.
Agricultural Biomass- A largely untapped renewable energy source: The type of biomass utilized by cement plants is highly variable, and is based on the crops that are locally grown/available. For e.g., rice husk, hazelnut shells, coconut husks, corn stover, coffee pods, and palm nut shells are among the many varieties of biomass currently being burned in cement kilns. Biomass fuels are considered carbon neutral because the carbon released during combustion is taken out of the atmosphere by the species during the growth phase.
Major challenges of using agricultural biomass residues include the relatively low calorific value which can cause flame instability, and availability since most of the agricultural residues are seasonal (not available all year round). The flame instability problems could be overcome with lower substitution rates and ability to adjust air flow and flame shape.
Other major Alternative Fuels include waste oil, liquid waste, Plastic, Meat and bone meal, etc.
Benefits of using Alternative Fuels in Cement Production
Cement producers are striving to lower their production costs. One effective method of achieving this end is the use of alternative fuels.
The reduction in emissions to the atmosphere and the positive environmental impact it holds is a major benefit of Alternative Fuel firing. In pre-calciners where kiln exhaust gases pass through, the NOx emissions are much reduced due to reburn reactions. Also, there is an increased net global reduction in CO2 emissions when waste is combusted in the cement kiln systems as opposed to dedicated incinerators, resulting a reduction in penalties.
Key considerations and challenges for co-processing Alternative Fuels
The potential benefits of burning alternative fuels at cement plants are numerous. However, the contrary is possible where poor planning results in higher emissions or when they are not put to their best use with best practices.
Alternative fuels used in cement manufacturing have different characteristics compared to the conventional fuels. Switching fuels present several challenges that must be addressed in-order to achieve successful application. The type of fuel used can introduce some material components which can interfere with the chemistry of the cement materials as well as affect the operation of the system. The use of a type of fuel is hence subject to the constraints imposed by any effect on cement quality, refractory life, gas and material flow or potential emissions to the atmosphere.
Poor heat distribution, unstable pre-calciner operation, blockages in the preheater cyclones, build-ups in the kiln riser ducts, higher emissions and dusty kilns are some of the major challenges.
FLSmidth Alternative Fuel Firing Technology
Introducing alternative fuels has an impact across the plant. The materials can have totally different characteristics from fossil fuels. They can be sticky, fluffy, moist, and fluctuating in size and quality or you may need to switch between different types of fuel with very different characteristic due to governed by availability. They will burn differently, have a different reaction in the kiln and may require you to take other actions to ensure consistent clinker quality. There are a lot of variables at play ??which is why you need an experienced partner on your side.
With over 25 years of direct alternative fuels experience and more than 130 years in the cement industry, FLSmidth? offers a range of products to enable Cement Manufacturers to increase their substitution of Alternative Fuels.
JETFLEX? Burner
Cement kilns have several characteristics which make them ideal installations for disposal of waste through co-processing in an environmentally sound manner:
– High temperatures
– Long residence time
– Oxidizing atmosphere
– High thermal inertia
– Alkaline environment
– Ash retention in clinker
FLSmidth?? JETFLEX? Burner is a highly flexible kiln burner, designed to produce the best flame shape and lowest NOx emissions for various fuel types and operating conditions. It fires rotary kilns with pulverized coal or coke, oil, natural gas, or any mixture of these fuels. Alternative fuel firing of plastic chips, wood chips and sewage sludge can also occur through the same common fuel channel to improve heat and power consumption and minimize cold airflow entering from the fuel transport.
JETFLEX? PLUS Burner
For optimum combustion flexibility, our JETFLEX PLUS Burner offers superior combustion of cost-effective grade fuels, complete flame-forming control and increased fuel retention time. The two design features that characterize the JETFLEX PLUS Burner model are individually rotatable jet air nozzles and a retractable center pipe for alternative fuel firing.
The individual rotatable nozzles also enable fuel lift configuration. This is used with solid alternative fuels to increase fuel retention time in the flame. The result is less fuel drop-out, improved combustion, and improved clinker quality. The swirler is the main mechanism for shaping the flame during start-up and daily operation.
The JETFLEX PLUS burner offers retraction of the swirler and central duct. In combination with the axial air nozzles, this enables a significant drop in fuel velocity in front of the burner. This feature strongly increases the fuel retention time in the flame and enables early ignition of low grade fuels. In combination with the fuel lift configuration as noted above, spillage to the charge is minimised. This allows the burner to contribute to superior flame and clinker quality control as well as a high alternative fuel substitution.
HOTDISC? Combustion Device
The HOTDISC solution allows cement producers to substitute coal or other fossil fuels with a wide range of alternative fuels. The HOTDISC is a flagship solution for FLSmidth?? MissionZero that helps cement producers take an important step toward zero-emission cement plants by 2030. Launched in 2004 and over 35 installations worldwide, the HOTDISC Combustion Devices has already firmly established itself as an attractive technology to accelerate cement plants??transition toward alternative fuels.
From wet powders to solid waste up to 1.2 metres in diameter, our HOTDISC Combustion Device can burn them all. The waste to energy process eliminates the need for expensive shredding and gives you the flexibility to select the most economical choice from a wide range of alternative fuel options. The HOTDISC Combustion Device is designed to achieve a calciner fuel substitution rate of up to 80%, although results vary significantly depending on specific plant conditions.
As an integrated part of your kiln system, the HOTDISC Combustion Device is added onto the calciner and functions as a slow-moving disc furnace. When alternative fuel, preheated raw meal and tertiary air are fed into the HOTDISC, it produces combustion gases, partly calcined meal and combustion residues. These are then processed in the calciner alongside the other streams entering it. The result is calcined meal ready for the kiln and well-controlled emissions.
Alternative fuels are introduced onto the slowly rotating disc and they start to burn in fully-oxidising conditions when they meet the hot tertiary air. The burning fuel is transported approximately 270? on the disc until it reaches the scraper, where the remaining ash and partly calcined materials are discharged into the riser duct. Heavy combustion residues fall into the kiln inlet, while lighter fragments and combustion gases move up into the calciner.
HOTDISC-S? is a recently developed version of HOTDISC specifically to cater the needs of customers with SLC type calciners, hence enabling them to achieve Alternative Fuel firing. Two of these devices have been commissioned globally and running successfully.
Low NOx Calciner
With a goal to optimise production costs, FLSmidth?? Low NOx Calciner has been enhanced for operational stability, availability and combustion efficiency.
NOX regulations are continuously being tightened around the world. Meeting NOx emissions limits is therefore a key demand for cement producers, not only because NOx-related issues, such as smog pollution, have a direct impact on the local society, but also because your plant?? license to operate is directly linked to its NOx emissions.
Multiple fuel inlets are given to ensure optimal distribution between the kiln gases and the fuel. To achieve the best distribution between the kiln gases and the fuel, there are multiple inlets (four or six, depending on plant size). Better fuel distribution provides optimal mixing, which gives the highest average cross-sectional temperature without any build-up problems.
The Low NOX Calciner has the flexibility to burn almost any type of fuel. This includes traditional fuels, including coal and natural gas, more difficult-to-burn fuels, such as petcoke, and most solid and liquid waste fuels. These fuel types are burned while achieving low NOx and CO emissions.Primary Mitigation
Another simple solution FLSmidth? provides for reducing the NOx emissions in the existing plants is the Primary mitigation NOx reduction through calciner design changes. These are basically layout changes to create one firing location, one meal split, one air stream entering tangentially to the calciner and creating “hot zone??and ??eduction zone?? The plant system is studied and appropriate modifications are recommended. For even lower NOx emissions, FLSmidth? provides SNCR system as an add-on solution.
Kiln Gas By-pass System
Kiln gas bypass systems have traditionally only been used in regions where the local raw materials are naturally high in chloride, sulfur or alkalis. The growing use of alternative fuels and other materials is also increasing the input of chloride to kiln systems to the point that may require a bypass to maintain process stability or product quality. FLSmidth has extensive experience with the design and use of kiln bypass systems.
Main features:
– Quench chamber with dual layer dip tube
– Quench air inlet flap valve
– Control scheme for maximum stability
– Special lining design in transition pipe section
– Constant force support system
– Multiple layout possibilities
While the fundamental principles of a bypass system have not changed, state-of-the-art technology and design tools have been incorporated to improve bypass efficiency and maximise reliability. Most projects today will at least have the space for a future small chloride bypass (less than 10%) with respect to use of alternative fuels and materials.
Conclusion
The co-processing of waste as AFR disposes the waste completely and thereby eliminates the societal concerns associated with it. In Indian cement industry, if these initiatives could increase thermal substitution to the level of European countries, the cement industry can reduce its GHG emission by a significant amount, impacting the overall country?? GHG emission.
The type of fuel used in cement production is subject to the constraints imposed by its effects on cement quality, refractory life, emissions to the atmosphere, etc. and hence requires proper study and planning by specialists before implementation.
To reduce fuel cost in cement industry, globally, waste materials and low-grade fuels are co processed extensively as alternative fuels or energy sources. India still has a long way to go in ensuring greater substitution of AFRs, resulting in sizable conservation of natural materials and fossil fuels and to make the most out of the technology available for the same.
Author:
Gopika Krishnakumar
Product Line Manager
Cement Industry/Pyro Technology
FLSmidth
You may like
Concrete
We consistently push the boundaries of technology
Published
1 month agoon
April 18, 2025By
admin
Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.
SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.
Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.
How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.
Key features include:
- High efficiency: Ensures optimal throughput for large volumes of waste.
- Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
- Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.
What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:
- Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
- Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
- Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
- Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.
What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.
This includes:
- Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
- Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
- Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
- Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.
How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:
- Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
- AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
- Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
- Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.
What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:
- AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
- Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
- Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
- Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
- Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.
(Communication by the management of the company)
Concrete
FORNNAX Technology lays foundation for a 23-acre facility in Gujarat
Published
3 months agoon
March 17, 2025By
admin
FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.
Concrete
Decarbonisation is a focus for our R&D effort
Published
4 months agoon
February 12, 2025By
admin
Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.
Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.
Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.
The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.
What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.
You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.
The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.
Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction

Cemex invests in AI optimisation through OPTIMITIVE

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction
