Connect with us

Concrete

Commonly used precast shapes

Published

on

Shares

In the olden days, wooden sleepers were used for laying the railway tracks, but due to the depleting wooden resources and increasing concern of the ecological balance, the use of concrete sleepers was started and now it has completely replaced the wooden sleepers. Concrete ties have become more common mainly due to greater economy and better support of the rails under high speed and heavy traffic. Ties are normally laid on top of track ballast, which supports and holds them in place, and provides drainage and flexibility. Heavy crushed stone is the normal material for the ballast, but on lines with lower speeds and weight, sand, gravel and even ash from the fires of coal-fired steam locomotives have been used. Regarding the market potential of the railway sleepers, their demand totally varies with the installation of new railway lines. To link almost every city and town with the other and to avoid the delay of trains because of ??ross??on single lines, number of new tracks is being installed. Tracks on high-density traffic routs with speed exceeding 100 km per hour, are being strengthened and modernised adopting improved methods of track maintenance for safer and comfortable rail travel.

Concrete sleepers can be produced from both new and recycled concrete. A railway sleeper is a rectangular support for the rails in railroad tracks. Generally laid perpendicular to the rails, ties transfer loads to the track ballast and subgrade, hold the rails upright and keep them spaced to the correct gauge. Railway sleepers are traditionally made of wood, but pre-stressed concrete is now also widely used, especially in Europe and Asia. Steel ties are common on secondary lines in the UK plastic composite ties are also employed, although far less than wood or concrete. From the view of region, Asia-Pacific and Europe have a larger sales market share in 2018 which together account for 74.02 per cent, and will witness a stable growth in following years.

The demand for sleepers will go on a lot better aspect in time to return. In the near future, the railways are probable to broaden as a minimum 5,000 to 8,000 km of rail network per year, which is almost 30 to 40 per cent extra than in past, assuming that kilometer of rail would need 1600 sleepers these plans are probable to outcomes in annual demand of about 1.3 crore of sleeper. Present manufacturing cost of monoblock broad gauge pre-stressed concrete sleeper is within the range of Rs 2,200 to Rs 2,500. The cement which is applied for the manufacture of the sleeper is the main raw material.

Cement requirement

The main requirement for railway sleepers is cement. There is a separate specification issued by Ministry of Railways through Research Design and Standards Organisation, Lucknow for the manufacture of concrete sleepers. It is popularly known as IRS T-40 grade of cement. The specification is quite similar to that of Ordinary Portland Cement 53 Grade except few parameters are different taking into account the requirement of manufacturing process of sleepers.

Likewise the cement fineness has to be minimum of 3700 sq. cm per gram. The compressive strength of cement mortar is measured only for the age of 7days and has to be minimum of 375 kg per sq cm. The tri calcium Silicate content (C3S) requirement has to be not less than 45 percent. The other requirements are same as that of 53 Grade of cement. The Indian cement industry is capable of fulfilling the entire requirement of sleeper manufacturing industry locally.

Vulnerability

The average lifespan of a pre stressed concrete sleeper is about 50 years. Over a period of time the pre stressed concrete sleepers have proved its superiority over wooden and steel sleepers. However the fundamental problems in these types of sleepers is vulnerability to chemical attack [DEF(Delayed Ettringite Formation), AAR(Alkali-Aggregate Reaction) and many others] and low impact resistance. It can be minimised by changing cement with Industrial waste cementitious materials, which will give extremely good engineering properties like protection against chemical degradation.

Railway produces around 1.3 crore (2019) sleepers each year and if they use industrial waste in concrete for sleepers, it’s going to reduce the value of manufacturing of each sleeper by approximately Rs 30, with the intention to imply a typical value saving of Rs 30 to 35 crore in keeping with annum for India Railways.

But critics have been quick to point out that the weight and bulk of concrete sleepers is a significant disadvantage when it comes to the cost ??both in time and money ??of initial installation and later repairs.

Spun pipes

The other major consumed pre cast item is spun/hume pipes. It is produced in a small scale industry (SSI) and has a very wide market. The technology used is pretty old and has not changed much but the use of these pipes is very extensive. Only SSI units can manufacture the RCC (reinforced cement concrete) pipes up to 100 cm diameter. Such pipes are classified into two groups as pressurized and non-pressurised. Cement, coarse and fine aggregate, sand, and mild and HT steel rods are used for the manufacture of such pipes. These are mostly manufactured in two lengths such as 1.8 m and 2.8 m with varying diameters from 10 cm to 100 cm. The RCC pipes are used for irrigation, culverts construction, sewerage, and drainage purposes for smooth transportation of effluents and to avoid seepage. The main raw materials used are cement, sand, aggregates, M.S. reinforcement rod and wire etc.

Manufacturing process

A mixture with raw materials such as cement, sand, and stone chips in 1:2.5:2.5 ratios are prepared with the help of power operated cement concrete mixture. Steel rod with reinforcement case is made in accordance with the dimensions of the pipe in a reinforcement making/winding machine. This case is then placed inside the pipe mold. The mold is mounted horizontally on the runners of the pipe molding machine. The mold is then rotated at a slow speed. Concrete mixture is fed into the rotating molds through its open ends at both sides.

When the mold is filled with required quantity of the mixture to obtain requisite thickness, the speed of the rotation of the mold is increased and kept at a fixed speed for few minutes depending upon the pipe diameter, length, etc. the inside diameter of the green pipe in the rotating mold is then finished for smoothness with the help of wooden reaper and to remove excess water. Thereafter neat cement is sprinkled inside the pipe to obtain a well-polished surface and to reduce friction coefficient at the time of its setting. The mold is taken out from the machine by the system and left in curing bay for the initial setting. On the following day, the molds are removed and the pipe is passed on to the curing tank and allowed to remain in the water for 15 days and then taken out for inspection and quality test. The finished product is then stocked in the yard for disposal. The pipes so manufactured are tested as per the specifications IS 458:1971 drawn by the Bureau of Indian Standards for ensuring the quality of the product.

Source: A research paper by Prof. Suresh Kumar.A and Dr.Muthukannan M. published by in International Journal of Recent Technology and Engineering (IJRTE), December 2019.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Efficient Cooling Solution Boosts Gearbox Uptime

Published

on

By

Shares

Efficient Oil Cooling for Gearbox in the Cement Industry. How a High-Performance Plate Heat Exchanger Ensured Thermal Stability and Operational Continuity.

Contributed by: Narendra Joshi and Sourabh Mishra

Application: Gearbox Oil Cooling
Objective: To maintain optimal oil temperature in high-viscosity lubrication systems for gearboxes in cement plants, ensuring uninterrupted operations and minimizing production losses due
to overheating.
Challenge: A prominent cement manufacturing company’s conventional cooling systems were failing to maintain the oil temperature within the optimal range, jeopardizing equipment performance and leading to avoidable downtime.

Background with the Existing System
In heavy-duty industrial applications, particularly in the cement industry, gearboxes are critical components that must operate under high mechanical loads and harsh conditions. These gearboxes rely on lubrication systems where oil plays a dual role, lubrication and heat dissipation. A recurring challenge in such setups is managing the temperature of the gearbox oil. When oil heats beyond a critical limit, its viscosity drops, reducing its ability to form a protective film. This leads to increased friction between components, heat generation, and eventual damage to gearbox components — directly impacting plant uptime and production output.

Delivering Sustainable Heat Transfer Solution with HRS FUNKE High Efficiency Heat Exchanger
This system was selected for its:

  • Excellent thermal performance, ensuring rapid and efficient oil cooling even with high-viscosity fluids.
  • Leakage-proof operation, with no cross-contamination between cooling water and lubrication oil.
  • Robust design, capable of withstanding high operating pressures and variable flow conditions.

The plate exchanger was custom configured based on the oil’s properties, desired outlet temperature, and ambient heat load, ensuring that the oil remained within the specified viscosity range necessary for maintaining gearbox operation and lubrication integrity.

Performance Benefits Delivered

  • Oil temperature control and maintained consistently within target range
  • Viscosity stability and prevented breakdown of lubrication film
  • Equipment reliability and reduced risk of gearbox overheating or failure
  • Production continuity and eliminated unplanned stoppages
  • Long-Term savings and lower maintenance costs and extended oil life

Solution: To address the problem, HRS Process Systems Ltd recommended the installation of a Funke Plate Heat Exchanger a compact, high-efficiency thermal solution engineered specifically for industrial lubrication oil cooling.

Conclusion: The customer achieved precision oil temperature control, ensuring that the gearboxes operated at optimal conditions. This not only safeguarded the mechanical integrity of the gearbox but also directly contributed to higher plant uptime and improved production efficiency in heavy industries like cement manufacturing.

(Communication by the management of HRS Process Systems Ltd)

Continue Reading

Concrete

How Upgrades Can Deliver Energy Savings Across the Cement Process

Published

on

By

Shares

Jacob Brinch-Nielsen, Vice President of Professional Services, FLSmidth Cement, brings together recommendations from experts across the flow sheet to demonstrate the role of upgrades in optimising the cement manufacturing process.

Improving energy efficiency in material transport
Pneumatic conveying offers a cleaner and more contained alternative to mechanical conveying. However, pneumatic systems can also be energy-intensive, with inefficiencies arising from air leakage, pressure losses, and outdated equipment designs. Optimising these systems can significantly reduce energy consumption and operating costs.
“One major challenge is maintaining efficient air-to-material ratios, as excessive air use leads to unnecessary power consumption,” explains Emilio Vreca, Manager of PT Product Engineering “Leaks in piping and inefficient compressors further compound energy losses. To address these issues, upgrading to the latest pneumatic conveying solutions can yield substantial improvements.”
The latest pump design—the Fuller-Kinyon® (FK) ‘N’ Pump—provides power savings of up to 15 per cent thanks to an improved seal, while an extended barrel and screw design have improved volumetric efficiency by more than 15 per cent. Similarly, the latest generation Ful-Vane™ Air Compressor has been engineered for increased energy efficiency, with an improved inlet area for capturing larger air flows and compatibility with variable frequency drives.

Optimising energy efficiency in packing and dispatch
Even minor inefficiencies in bagging and palletising can lead to higher maintenance demands, increased material waste, and unnecessary energy use. Reducing these inefficiencies is yet another lever to improve overall plant performance and sustainability.
Upgrading rotary packers enhances weighing accuracy, reduces spout-to-spout variations, and lowers reject rates, improving both product consistency and energy efficiency. Similarly, replacing pneumatic drive systems in palletisers with electric alternatives eliminates compressed air dependency, leading to more precise bag handling and reduced energy demand. These targeted upgrades help streamline operations while minimising environmental impact.
A key development in dust control is the FILLPro™ Dust Reduction Kit for GIROMAT® EVO. “By refining material flow and fluidisation, FILLPro reduces dust emissions at the source, improving bagging efficiency and plant cleanliness,” explains Gabriele Rapizza, Proposal Engineer. “This reduces material loss, prevents blockages, and cuts down on maintenance, helping plants achieve a more stable and energy-efficient packing operation.”

How services contribute to increased energy efficiency
In the past, many viewed the role of the supplier as a “sell-and-move-on” model. Things have certainly changed. As cement producers face challenging markets, heightened competition, and increasingly ambitious decarbonisation targets there is little room to tolerate inefficiencies within the plant. The paradigm has shifted such that the value of expert services is as essential as the initial equipment supplied. Furthermore, as digital solutions progress at speed, a fluid, long-term partnership gives cement plants the best platform to take advantage of the latest tools.
Whether it’s an audit to identify why energy efficiency has decreased from one year to the next, or even an optimisation package preparing your plant for carbon capture solutions – we are believers in the principle that there is always more we can do to improve efficiency. For example, our Online Condition Monitoring Services (OCMS) provide continuous monitoring of critical equipment such as the kiln, mills, cooler and fans, aggregating data and utilising advanced algorithms to identify potential trouble spots. As the OEM and an experienced full solutions provider, we can support these services with expert advice, not only alerting you to a problem but also providing recommendations as to how to remedy it or attending site to support you in person.

Small upgrades, big impact
Energy efficiency is a critical factor, influencing both operational costs and sustainability goals. While large-scale innovations such as carbon capture will play an essential role in long-term decarbonisation (and steal the headlines), incremental mechanical upgrades offer an immediate pathway to lower energy consumption with minimal disruption.
By optimising key process areas — grinding, dosing, combustion, cooling, and material transport — you can achieve measurable energy savings while improving performance and flexibility. These solutions provide a strong return on investment and pave the way for a more sustainable cement industry.

Part 3 of 3. Read Part 1 in the May issue of Indian Cement Review and Par 2 in the June issue of the Indian Cement Review magazine.

(Communication by the management of the company)

Continue Reading

Concrete

Star Cement launches ‘Star Smart Building Solutions’

Published

on

By

Shares

Star Cement has launched ‘Star Smart Building Solutions,’ a new initiative aimed at promoting sustainable construction practices, as per a recent news report. This venture introduces a range of eco-friendly products, including tile adhesives, tile cleaners and grouts, designed to enhance durability and reduce environmental impact. The company plans to expand this portfolio with additional value-added products in the near future. By focusing on sustainable materials and innovative building solutions, Star Cement aims to contribute to environmentally responsible construction and meet the evolving needs of modern infrastructure development.

Image source:https://www.starcement.co.in/

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds

    This will close in 0 seconds