Connect with us

Technology

Application of computational fluid & particle dynamics for cement industry

Published

on

Shares

Computational Fluid Dynamics (CFD) is widely used by the global cement Industry to design the process equipment and improve performance. CFD methodology is believed to be a complex technology by the practising engineers. This article by Vivek Vitankar of FluiDimensions, Pune and Ravindra Aglave of Siemens Digital Industries Software, Houston, TX, USA aims to describe the CFD methodology in a detailed but simpler manner.

Cement production is a highly energy intensive (thermal and electrical energy) process. A lot of effort is spent by designers on a trial and error basis to address the energy and pollutant reduction issues. These efforts have helped the industry to achieve a portion the targets over a period of time. On many occasions, the gains are temporary. A scientific approach that is at a lower cost which does not disrupt production and is faster than trial and error approach to identify the problem, its root cause and provide a robust solution is desired.

Virtual process development based (VPD) on numerical models such as Computational fluid Dynamics (CFD) has emerged as a proven technology in the process industry to design and validate the process equipment, debottleneck performance, optimize operating conditions, perform detailed "what if" studies. The equipment performance depends on the operational philosophy, equipment design, the quality of raw materials and the fuel being used. That makes computational fluid dynamics as a best tool to optimize performance equipment individually.

CFD Methodology and Workflow
After identifying an issue or a problem, initial assessment can define the objective of the analysis. Once an objective of the analysis is decided, first step is to draw a three-dimensional CAD geometry based on the GA and internal drawings of the equipment. It is very critical to have the updated drawings with all the dimensions. A site visit or a meeting with designers is recommended at this early stage.

In the second step, meshing, the full scale 3D CAD is discretized into numerous small volume elements. It is in these volume elements, the Navier-Stokes equations are solved. As a general rule, more the volume elements, better is the accuracy of the solution. Figure 1 shows schematic workflow of the entire process with input requirements.

In the third step, the underlying physics and chemistry (if necessary) of the process is represented using the mathematical models available in the CFD software. For example, multiphase physics for gas-solid flow in cyclones, combustion reactions and heat transfer modes modeling in kiln and calciner, NOx reactions etc.

To simulate the problem, an experienced CFD engineer uses the right algorithms, combination of relaxation parameters, tricks of convergence. Adequate knowledge of the software, involved physics and compute resources is a precursor of such work.

The important task of analysing the results starts after the converged solution is obtained. At this stage the understanding of the process and equipment is crucial to connect the link between CFD results and process observations. Analysing overall pressure drop and collection efficiency obtained from CFD results of the cyclone is not sufficient. One needs to look into the detailed velocity contours and vectors at different locations. It is detailed analysis that leads to pinpoint the issues in the performance. Once the issues are identified, most of the times the solution to the problem emerges.

Figure 1. Workflow involved in CFD Analysis

At this stage, we recommend to have discussion with the operations/design team as they can have limitations to implement a theoretically perfect design solution. There could be structural issues, access to the location to carry out implementation or operational challenges.

As the design solution is accepted, the delivery process starts. Delivery package includes engineering design drawings highlighting the changes in the original drawings, fabrication drawings along with the material of construction, total quantity of the material needed and benefits that would be achieved. During the implementation process, CFD engineer needs to guide the fabrication and implementation teams and ensure that the implementation is done in a right way.

Table 1: Benefits achieved in Cement Industry using CFD modeling

*Typical inputs required are drawing details including GA drawings, assembly drawings, refractory drawings, all internals, clearly marked location and sizes of all inlets and outlets. Operating conditions like gas flow rate, temperature, pressure, gas composition, fuel compostion, combustion characteristics etc.

Practices followed at FluiDimensions:

We follow the entire process described above and analyse the performance as per the design and operating conditions with respect to the objective statement. Detailed analysis tools of STAR-CCM+ gives the insight of root cause of the design or operation issue. (for example in Cyclone, Pressure drop and collection efficiency, for Calciner, O2, CO, NOx level at exit, temperature, extent of combustion, residence time distribution, regions of high and low temperature, reducing zones etc). Siemens Simcenter STAR-CCM+ offers a unique feature of design exploration that allows faster optimization over the design or operating variables.

One very important aspect of CFD simulations at FluiDimensions is model validation. It is very important that the CFD results are validated before a design solution is proposed. However, it is not possible to measure detailed velocity, temperature, species concentration at different locations in the industrial setups. Hence, we validate our CFD models and solution methodologies using the experimental data in the published literature. This approach gives us the confidence to solve industrial problems. For example, figure 2 shows comparison of axial velocity and temperature in the IFRF Coal combustion study1 and figure 3 shows the comparison of velocity profiles in cyclone2

Figure 2. Comparison of axial velocity and Temperature with the experimental data [1]

Figure 3. Comparison of tangential velocity and axial velocity with experimental data [2].

The following sections describe few case studies to get better insight of CFD process and value addition.

Case Study I: Performance Improvement of a Cyclone Separator
Based on the GA drawings, a full three dimension actual scale CAD geometry is drawn using CAD features of Siemens Simcenter STAR-CCM+. Next step is to create a polyhedral mesh with required quality criteria. Reynolds stress turbulence model was used as the flow is highly swirling in cyclones. Lagrangian Multiphase model is used to track solid particles in the cyclone. Using the information provided (like gas flow rate, temperature, pressure and solid loading % solids of gas flow rate and particle size distribution), base case simulation were carried out for the gas-solid flow using Simcenter STAR-CCM+. The software gave converged results in @5000 iterations in 8-10 hours using 32 cores. Figure 4 presents the fine polyhedral mesh, velocity and pressure contour obtained from the simulation. The pressure drop and the collection efficiency (87%) were found to match with the plant observation. To improve the collection efficiency, various design modifications (increase dip tube height, increasing roof height, tapered inlet, change involute size etc) were considered for simulation. We used the design exploration feature of STAR-CCM+. This feature automates the whole simulation process leading to rapid optimized solution. In other words, arrive at the solution faster by an automated trial and error method but in virtual space! After simulations, the pressure drop and collection efficiency was noted for every design arriving at optimized design. All the design changes and simulations take over 20-25 days which otherwise would take 30-40 days

Case Study II: Duct design optimization: Cement plants have large ducts to transport air, generally laden with particles from PF Fan, Coal Mill Fan Bag house, ESP, Coal Mills etc. Due to the space constraint, the ducting circuit ends up in multiple sharp bends leading to high pressure drops. Baffles are frequently used to obtain a uniform flow. STAR-CCM+ has been used with an automated work flow to investigate a series of baffle designs in ducts giving most uniform air flow with least pressure drop. In this instance, we used design explorer to rapidly analyse the effects of two design parameters: the number of number of turning vanes (anywhere from 1 to 10) and the dimension of each turning vane’s common radius (from 0.10 meters to 0.50 meters). Figure 5 summarizes the pressure profile for different scenarios.

Figure 5. Duct design optimization

In another case, CFD modelling using STAR-CCM+ was used for a LaFarge cement plant [3] to find an

Before

After

optimum design of a supply duct to an electrostatic precipitator [4]. By increasing the flow uniformity reduced the peak air velocity causing less. This resulted in reduction of number of cleaning cycles per day by 90% and a savings of up to $40,000 per month in maintenance & repair costs [5]. Figure 6 shows the base and modified design.

Figure 6. CFD results of duct to an ESP

Case Study III: Rotary kiln case study: Rotary Kilns consume significant amount of energy and release more than 25 tons of nitrogen oxides (NOx) per year [4] due to the high flame temperatures that result in formation of NOx. Stringent emissions control requirements are forcing operators to develop new and cost effective ways of minimizing/controlling emissions.

The most common post combustion control approaches include Selective Non-Catalytic Reduction (SNCR), and Selective Catalytic Reduction (SCR). The SNCR process involves the injection of ammonia in the form of ammonia water or urea solution in the flue-gas, at a suitable temperature to convert NOx to N2. While the SCR process adds ammonia or urea in the presence of a catalyst to selectively reduce NOx emissions from the exhaust gases.

An SNCR system’s performance in cement kilns depends on the temperature, residence time, reagent injection rate, turbulence or the degree of mixing between the injected reagent and the combustion gases, oxygen content, and baseline NOx levels in the kiln. The process is relatively ineffective at temperatures below 800oC and above 1150oC. At temperatures below 800oC, excessive amounts of ammonia are released to the atmosphere through the stack because of incomplete reagent dissociation, and at higher temperature, the reactions favour NOx formation and significantly higher reagent injection rates are required to meet the target NOx levels. The SNCR system is typically installed in the preheater of a lime kiln or the pre-calciner of a cement kilns.

The use of Computational Fluid Dynamics (CFD) to study the design and improve the performance of these systems is a cost effective alternative to expensive and time-consuming field tests. One recent case study of interest is that done by KFS [5] in which combustion and SNCR modeling of a rotary kiln with preheater in a lime plant was carried out in step wise procedure using Simcenter STAR-CCM+.

Step 1: 3D simulation of the rotary kiln with models for turbulence, chemistry, and heat transfer for the gas phase, which is coupled to an in-house, developed and validated, bed chemistry model to represent the transport and heat transfer of solids in the kiln

Figure 7. Illustration of gas phase and bed chemistry coupling

Step 2: Mapping of the exhaust gas temperature, velocity, turbulence and species profiles to be used as the inlet conditions for the 3D simulation of the preheater.

Figure 8. Flame profiles with different fuel composition

Step 3. Modeling the SNCR process in the preheater by simulating the urea injection and the subsequent reactions to obtain information related to system performance such as mixing profiles, NOx reduction, NH3 slippage etc. The two-step urea decomposition via the thermolysis and hydrolysis pathways are modeled, and the subsequent NOx reduction based on the 7-step reduced kinetic mechanism is used in the simulations.

Useful insights about the effectiveness of mixing, the gas temperatures encountered in the preheater, and the resulting NOx reduction for a given urea injection rate at specified locations can be obtained from the 3D CFD simulations.

The injector positions and the total number of injectors were varied to identify an optimum configuration that could achieve the desired NOx reduction with minimum urea slippage. The best design resulted in approximately 60% NOx reduction of the baseline furnace value with a urea slippage of less than 1 ppm.

The effect of urea flow rate on NOx reduction efficiency for the optimum configuration can then be studied and compared to field data after the installation. In one example the correct trend was captured for the percentage reduction in NOx by the CFD results as the urea flow rate was increased.

Figure 9. Urea injection location and calculated NOx distribution

The results from these studies demonstrate that CFD is a useful tool to help design and optimize the kiln and the SNCR system for effective NOx control. The potential savings associated with operating a thermally efficient kiln, and a well-controlled SNCR process with minimum urea slippage could be significant. The possibilities are endless! CFD along with a carefully planned design exploration study can be used to gain useful insights into system performance and design whether it is a rotary kiln, a cyclone separator, ESP, Calciner, Ducts, Fans, at a fraction of the time and cost that it takes to actually build and test prototypes of these systems.

References
1.Peters and Weber, "Mathematical Modelling of a 2.4 MW Swirling Pulverised Coal Flame", Combustion Science and Technology, 1997,Vol. 122, page 131-182
2.M. D. Slack, R. O. Prasad, A. Bakker, F. Boysan "Advances in Cyclone Modelling Using Unstructured Grids", TransIChemE, Vol. 78, Part A, November 2000, page 1098- 1104.
3.Porter, M. and TroutComputational Fluid Dynamics (CFD) is widely used by the global cement Industry to design the process equipment and improve performance. CFD methodology is believed to be a complex technology by the practising engineers. This article by Vivek Vitankar of FluiDimensions, Pune and Ravindra Aglave of Siemens Digital Industries Software, Houston, TX, USA aims to describe the CFD methodology in a detailed but simpler manner.

Cement production is a highly energy intensive (thermal and electrical energy) process. A lot of effort is spent by designers on a trial and error basis to address the energy and pollutant reduction issues. These efforts have helped the industry to achieve a portion the targets over a period of time. On many occasions, the gains are temporary. A scientific approach that is at a lower cost which does not disrupt production and is faster than trial and error approach to identify the problem, its root cause and provide a robust solution is desired.

Virtual process development based (VPD) on numerical models such as Computational fluid Dynamics (CFD) has emerged as a proven technology in the process industry to design and validate the process equipment, debottleneck performance, optimize operating conditions, perform detailed "what if" studies. The equipment performance depends on the operational philosophy, equipment design, the quality of raw materials and the fuel being used. That makes computational fluid dynamics as a best tool to optimize performance equipment individually.

CFD Methodology and Workflow
After identifying an issue or a problem, initial assessment can define the objective of the analysis. Once an objective of the analysis is decided, first step is to draw a three-dimensional CAD geometry based on the GA and internal drawings of the equipment. It is very critical to have the updated drawings with all the dimensions. A site visit or a meeting with designers is recommended at this early stage.

In the second step, meshing, the full scale 3D CAD is discretized into numerous small volume elements. It is in these volume elements, the Navier-Stokes equations are solved. As a general rule, more the volume elements, better is the accuracy of the solution. Figure 1 shows schematic workflow of the entire process with input requirements.

In the third step, the underlying physics and chemistry (if necessary) of the process is represented using the mathematical models available in the CFD software. For example, multiphase physics for gas-solid flow in cyclones, combustion reactions and heat transfer modes modeling in kiln and calciner, NOx reactions etc.

To simulate the problem, an experienced CFD engineer uses the right algorithms, combination of relaxation parameters, tricks of convergence. Adequate knowledge of the software, involved physics and compute resources is a precursor of such work.

The important task of analysing the results starts after the converged solution is obtained. At this stage the understanding of the process and equipment is crucial to connect the link between CFD results and process observations. Analysing overall pressure drop and collection efficiency obtained from CFD results of the cyclone is not sufficient. One needs to look into the detailed velocity contours and vectors at different locations. It is detailed analysis that leads to pinpoint the issues in the performance. Once the issues are identified, most of the times the solution to the problem emerges.

Figure 1. Workflow involved in CFD Analysis

At this stage, we recommend to have discussion with the operations/design team as they can have limitations to implement a theoretically perfect design solution. There could be structural issues, access to the location to carry out implementation or operational challenges.

As the design solution is accepted, the delivery process starts. Delivery package includes engineering design drawings highlighting the changes in the original drawings, fabrication drawings along with the material of construction, total quantity of the material needed and benefits that would be achieved. During the implementation process, CFD engineer needs to guide the fabrication and implementation teams and ensure that the implementation is done in a right way.

Table 1: Benefits achieved in Cement Industry using CFD modeling

*Typical inputs required are drawing details including GA drawings, assembly drawings, refractory drawings, all internals, clearly marked location and sizes of all inlets and outlets. Operating conditions like gas flow rate, temperature, pressure, gas composition, fuel compostion, combustion characteristics etc.

Practices followed at FluiDimensions:

We follow the entire process described above and analyse the performance as per the design and operating conditions with respect to the objective statement. Detailed analysis tools of STAR-CCM+ gives the insight of root cause of the design or operation issue. (for example in Cyclone, Pressure drop and collection efficiency, for Calciner, O2, CO, NOx level at exit, temperature, extent of combustion, residence time distribution, regions of high and low temperature, reducing zones etc). Siemens Simcenter STAR-CCM+ offers a unique feature of design exploration that allows faster optimization over the design or operating variables.

One very important aspect of CFD simulations at FluiDimensions is model validation. It is very important that the CFD results are validated before a design solution is proposed. However, it is not possible to measure detailed velocity, temperature, species concentration at different locations in the industrial setups. Hence, we validate our CFD models and solution methodologies using the experimental data in the published literature. This approach gives us the confidence to solve industrial problems. For example, figure 2 shows comparison of axial velocity and temperature in the IFRF Coal combustion study1 and figure 3 shows the comparison of velocity profiles in cyclone2

Figure 2. Comparison of axial velocity and Temperature with the experimental data [1]

Figure 3. Comparison of tangential velocity and axial velocity with experimental data [2].

The following sections describe few case studies to get better insight of CFD process and value addition.

Case Study I: Performance Improvement of a Cyclone Separator
Based on the GA drawings, a full three dimension actual scale CAD geometry is drawn using CAD features of Siemens Simcenter STAR-CCM+. Next step is to create a polyhedral mesh with required quality criteria. Reynolds stress turbulence model was used as the flow is highly swirling in cyclones. Lagrangian Multiphase model is used to track solid particles in the cyclone. Using the information provided (like gas flow rate, temperature, pressure and solid loading % solids of gas flow rate and particle size distribution), base case simulation were carried out for the gas-solid flow using Simcenter STAR-CCM+. The software gave converged results in @5000 iterations in 8-10 hours using 32 cores. Figure 4 presents the fine polyhedral mesh, velocity and pressure contour obtained from the simulation. The pressure drop and the collection efficiency (87%) were found to match with the plant observation. To improve the collection efficiency, various design modifications (increase dip tube height, increasing roof height, tapered inlet, change involute size etc) were considered for simulation. We used the design exploration feature of STAR-CCM+. This feature automates the whole simulation process leading to rapid optimized solution. In other words, arrive at the solution faster by an automated trial and error method but in virtual space! After simulations, the pressure drop and collection efficiency was noted for every design arriving at optimized design. All the design changes and simulations take over 20-25 days which otherwise would take 30-40 days

Case Study II: Duct design optimization: Cement plants have large ducts to transport air, generally laden with particles from PF Fan, Coal Mill Fan Bag house, ESP, Coal Mills etc. Due to the space constraint, the ducting circuit ends up in multiple sharp bends leading to high pressure drops. Baffles are frequently used to obtain a uniform flow. STAR-CCM+ has been used with an automated work flow to investigate a series of baffle designs in ducts giving most uniform air flow with least pressure drop. In this instance, we used design explorer to rapidly analyse the effects of two design parameters: the number of number of turning vanes (anywhere from 1 to 10) and the dimension of each turning vane’s common radius (from 0.10 meters to 0.50 meters). Figure 5 summarizes the pressure profile for different scenarios.

Figure 5. Duct design optimization

In another case, CFD modelling using STAR-CCM+ was used for a LaFarge cement plant [3] to find an

Before

After

optimum design of a supply duct to an electrostatic precipitator [4]. By increasing the flow uniformity reduced the peak air velocity causing less. This resulted in reduction of number of cleaning cycles per day by 90% and a savings of up to $40,000 per month in maintenance & repair costs [5]. Figure 6 shows the base and modified design.

Figure 6. CFD results of duct to an ESP

Case Study III: Rotary kiln case study: Rotary Kilns consume significant amount of energy and release more than 25 tons of nitrogen oxides (NOx) per year [4] due to the high flame temperatures that result in formation of NOx. Stringent emissions control requirements are forcing operators to develop new and cost effective ways of minimizing/controlling emissions.

The most common post combustion control approaches include Selective Non-Catalytic Reduction (SNCR), and Selective Catalytic Reduction (SCR). The SNCR process involves the injection of ammonia in the form of ammonia water or urea solution in the flue-gas, at a suitable temperature to convert NOx to N2. While the SCR process adds ammonia or urea in the presence of a catalyst to selectively reduce NOx emissions from the exhaust gases.

An SNCR system’s performance in cement kilns depends on the temperature, residence time, reagent injection rate, turbulence or the degree of mixing between the injected reagent and the combustion gases, oxygen content, and baseline NOx levels in the kiln. The process is relatively ineffective at temperatures below 800oC and above 1150oC. At temperatures below 800oC, excessive amounts of ammonia are released to the atmosphere through the stack because of incomplete reagent dissociation, and at higher temperature, the reactions favour NOx formation and significantly higher reagent injection rates are required to meet the target NOx levels. The SNCR system is typically installed in the preheater of a lime kiln or the pre-calciner of a cement kilns.

The use of Computational Fluid Dynamics (CFD) to study the design and improve the performance of these systems is a cost effective alternative to expensive and time-consuming field tests. One recent case study of interest is that done by KFS [5] in which combustion and SNCR modeling of a rotary kiln with preheater in a lime plant was carried out in step wise procedure using Simcenter STAR-CCM+.

Step 1: 3D simulation of the rotary kiln with models for turbulence, chemistry, and heat transfer for the gas phase, which is coupled to an in-house, developed and validated, bed chemistry model to represent the transport and heat transfer of solids in the kiln

Figure 7. Illustration of gas phase and bed chemistry coupling

Step 2: Mapping of the exhaust gas temperature, velocity, turbulence and species profiles to be used as the inlet conditions for the 3D simulation of the preheater.

Figure 8. Flame profiles with different fuel composition

Step 3. Modeling the SNCR process in the preheater by simulating the urea injection and the subsequent reactions to obtain information related to system performance such as mixing profiles, NOx reduction, NH3 slippage etc. The two-step urea decomposition via the thermolysis and hydrolysis pathways are modeled, and the subsequent NOx reduction based on the 7-step reduced kinetic mechanism is used in the simulations.

Useful insights about the effectiveness of mixing, the gas temperatures encountered in the preheater, and the resulting NOx reduction for a given urea injection rate at specified locations can be obtained from the 3D CFD simulations.

The injector positions and the total number of injectors were varied to identify an optimum configuration that could achieve the desired NOx reduction with minimum urea slippage. The best design resulted in approximately 60% NOx reduction of the baseline furnace value with a urea slippage of less than 1 ppm.

The effect of urea flow rate on NOx reduction efficiency for the optimum configuration can then be studied and compared to field data after the installation. In one example the correct trend was captured for the percentage reduction in NOx by the CFD results as the urea flow rate was increased.

Figure 9. Urea injection location and calculated NOx distribution

The results from these studies demonstrate that CFD is a useful tool to help design and optimize the kiln and the SNCR system for effective NOx control. The potential savings associated with operating a thermally efficient kiln, and a well-controlled SNCR process with minimum urea slippage could be significant. The possibilities are endless! CFD along with a carefully planned design exploration study can be used to gain useful insights into system performance and design whether it is a rotary kiln, a cyclone separator, ESP, Calciner, Ducts, Fans, at a fraction of the time and cost that it takes to actually build and test prototypes of these systems.

References
1.Peters and Weber, "Mathematical Modelling of a 2.4 MW Swirling Pulverised Coal Fl

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds