Connect with us

Environment

Skill development initiatives in India

Published

on

Shares

Skill development is a major challenge and initiatives have been taken not only by the Government but also by industry to facilitate skill development, but the task is gigantic and more needs to be done, says Dr Rajen Mehrotra.

To benefit from the demographic dividend, the Government of India both during the United Progressive Alliance (UPA) Government (i.e. 2004-14) plus the National Democratic Front (NDF) Government (i.e. 2014-24) have been making efforts by coming forward with various initiatives / schemes to improve the availability of skilled youth in India. Around 90 per cent of the workforce in developed countries is vocationally qualified, while in India the number is still only 5-7 per cent[1]. Skill development is a major challenge and initiatives have been taken not only by the Government but also by industry to facilitate skill development, but the task is gigantic and more needs to be done.

Apart from skill development, skill up gradation is a continuous process. Skill up-gradation is needed in all the fields not only in manufacturing but also in services. Upgradation can be from basic to advanced and finally to expert and can be at various stages, however this article is dealing with skill development at the initial stage for the youth of the country. India needs basically expertise through skill advancement for the youth in various fields. Along with skill development mentoring is an important area during skill upgradation and having good mentors helps the candidate to develop and grow. Industrial training institutes
Industrial training institutes (ITIs) with a focus on skill development were started in 1950 in India. These are presently under the Ministry of Skill Development and Entrepreneurship. The Government of India is running 2,293 ITIs and there are 10,812 private ITIs, thus having a total strength of 13,105 ITIs in the country as per published figures in April 2016. Vocational training of quite many ITI’s is not necessarily meeting the present-day requirement of advanced manufacturing enterprises, hence after completing the courses the young students passing out struggle to find meaningful employment.

The United Progressive Alliance (UPA) Government in 2007 went in for a Public Private Partnership (PPP) scheme asking industry to help upgrade the quality of training in the Government run ITIs. Quite many enterprises collaborated with the Government in this task of upgradation. Under PPP scheme, the Government of India provided interest free loan of Rs. 25 million to the Institutes Management Committee (IMC) Society of the partnered ITI and the repayment of the loan had a moratorium of 10 years from the year in which the loan had been received by the IMC Society. After the moratorium the loan amount had to be repaid in equal annual instalments over a period of 20 years, the first instalment repayable from the 11th anniversary of the date of receipt of money. This was a unique PPP scheme primarily aimed at improving the quality of training to benefit the students of the ITI in improved knowledge and skill for better chances of employability or being self employed. Many enterprises of the corporate sector supported this scheme, so as to improve the quality of skill development of the students and also improved the infrastructure of ITI’s which needed upgradation, though much more needed to be done.

Enterprises Running Training Institute
Certain manufacturing companies in order to get skilled workers in specific trades use to run a basic training centre wherein the youth acquired the requisite skill and also went through some knowledge acquisition by attending classes. In quite many cases these were confined to trades relevant to the industry in which the enterprise operated. Some of these enterprises got their trainees to qualify for the trades specified under the ITIs and some did not do that. I had an experience of this when I worked with Mukand Iron & Steel Works (now called Mukand) and also with ACC. There are quite many old companies that had this practice and still continue with this practice, as it helps the youth of the country to develop.

The modern vocational institutes set by companies like Mahindra and Mahindra, L&T and many leading companies are very good and the trainees from such institutions have no problem getting meaningful employment. Also, the trainees have competencies to set up small start-up’s and do well over time as they are trained with modern technology unlike the ones from the traditional ITIs. Some old enterprises have discontinued this practice later, as they were not in a position to absorb these trainees and it tended to create industrial relations problems. Most enterprises including the small and medium enterprises cannot undertake such an activity, and hence expect such trained personnel to be provided by the Government or by private agencies.

The Apprenticeship Act, 1961
In India we have The Apprenticeship Act, 1961 under which enterprises engaged the youth of this country as an apprentice in their premises to undergo apprenticeship training. This Act went through a major amendment in 2014 when the Apprentices (Amendment) Act 2014 came with the concept of "optional trade", which means any trade or occupation or any subject field in engineering or non-engineering or technology or any vocational course as may be determined by the employer for the purpose of the Act. There were enterprises that have introduced the provision of "optional trade" based on the business of the enterprise got their certified industrial employment standing orders amended to engage apprentices for a fixed duration of training. Some of these enterprises in the initial period have absorbed the enterprise apprentices as regular workers based on vacancies, however later they are finding it tough to absorb this trained youth.

National Employment Enhancement Mission (NEEM)
The Government through All India Council for Technical Education (AICTE) in April 2013 has launched a program known as National Employment Enhancement Mission (NEEM). The objective of the programme as mentioned is to develop a competent workforce which could take the country ahead in the industrial world. Under the programme, a NEEM agent can place a maximum number of 5,000 trainees in industry and the trainees can be a person between the age of 18 to 40 years, who has discontinued studies or is studying any course or completed a course leading to a graduation/diploma in any technical/non-technical stream. The period of training can be for a minimum period of three months and a maximum period of thirty-six months and the NEEM agent shall pay all enrolled NEEM trainees a stipend, which shall be at par with the prescribed minimum wage for unskilled category in the enterprise where they are placed.

The NEEM trainees in any enterprises are to be taken through a registered NEEM agent, who shall have at least a turnover of Indian Rs.50 million per financial year for the previous three financial years or a section 25 company (not for profit company under section 25 of The Companies Act, 1956. Which presently is called section 8 company under The Companies Act, 2013) is formed to meet the objectives of NEEM. This scheme has become very popular in the last three years and a large number of manufacturing enterprises are taking NEEM trainees who work along with regular workers of the enterprise.

Skill India Initiative
The NDA Government from 2014 launched various SKILL INDIA initiative to improve employability of the youth by enhancing their skill sets. Some of these initiatives are given below:

Deen Dayal Upadhyaya Grameen Kaushalya Yojana (2014) [2]: The Ministry of Rural Development (MoRD) announced the Deen Dayal Upadhyaya Grameen Kaushalya Yojana (DDU-GKY) Antyodaya Diwas, on September 25, 2014. DDU-GKY is a part of the National Rural Livelihood Mission (NRLM), tasked with the dual objectives of adding diversity to the incomes of rural poor families and cater to the career aspirations of rural youth. Over 180 million or 69 per cent of the country’s youth population between the ages of 18 and 34 years lives in rural area and around 55 million of them falls in the bottom of pyramid with no/marginal employment. DDU-GKY aims to skill such rural youth by providing them with jobs and ensuring regular monthly wages or above the minimum wages. DDU-GKY is present in 28 States and UTs, across 669 districts, impacting youth from over 7,294 blocks. It currently has over 1,242 projects being implemented by over 557 partners, in more than 585 trades from 50 industry sectors. Over 7.9 lakh candidates have been trained and over 3.6 lakh candidates have been placed in jobs as on July 11, 2019.

Pradhan Mantri Kaushal Vikas Yojana (2015) [3]: This scheme was launched by the Ministry of Skill Development and Entrepreneurship to formulate and implement the Pradhan Mantri Kaushal Vikas Yojana (PMKVY) through the National Skill Development Corporation in March 2015. Individuals with prior learning experience or skills will also be assessed and certified under Recognition of Prior Learning (RPL).

Here the government provides training with the help of third-party training partners. Apart from the training, the candidates shall also go through an assessment at the end of the training schedule. A certificate of merit shall also be issued to candidates at the end of this training period based on the assessment. Training and Assessment fees are completely paid by the Government and on an average a sum of Rs 8000 is to be rewarded to an individual enrolled in the scheme.

Financial Assistance for Skill Training of Persons with Disabilities (2015) [4]: This scheme helps in empowering the 26.8 million disabled population in India in accordance with the existing "The Persons with Disability Act 1995". The scheme provides special training stipend for person with disability less than 40 per cent and between the age group from 19 to 59. The scheme also consists of facilities such as hostels and accommodation, cost of transport and other incentives to the candidate enrolled. Also, an all-inclusive training cost of Rs 5,000 per trainee per month shall be provided for the entire duration of the training. The benefits are to be transferred in four instalments.

National Apprenticeship Promotion Scheme (2016) [5]: This scheme is the newest amongst the cluster. It was launched in August 2016, which promotes apprenticeship by sharing 25 per cent of the prescribed stipend of the apprenticeship burden (maximum of Rs 1,500 per month).

Craftsmen Training Scheme (1950) [6]: The scheme was launched in year 1950 to shape the future workmen. Because of this scheme, only at present Craftsmen Training Scheme are being offered through a network of 15,042 it is (Government: 2738 + Private: 12,304) located all over the country with total of 22.82 lakh trainees enrolled. This scheme has played and has been playing a significant role in restoring the traditional arts and crafts skills of the traditional Indian.

Pradhan Mantri Kaushal Kendra (2018) [7]: This scheme focuses on establishing special Model Training Centres (MTCs) established in every district of the country by Ministry of Skill Development and Entrepreneurship (MSDE). The model training centres envisage to:

Create benchmark institutions that demonstrate inspirational value for competency-based skill development training.
Focus on elements of quality, sustainability and connection with stakeholders in skills delivery process.
Transform from a mandate-driven footloose model to a sustainable institutional model.

These training centres can be built by receiving an amount of 75 per cent of the project investment from central government.

Skill Development for Minorities (2013) [8]: The scheme called "Learn and Earn" has been launched specially for minorities in 2013 to help the minorities to get better chances of employment even with minimum qualifications (at least class V). The Ministry of Minority Affairs has developed courses include majority of traditional skills being practiced by the minority communities, e.g. embroidery, chikankari, zardosi, patch work, gem and jewelry, weaving, wooden works, leather goods, brass metal works, glass wares, carpet, etc. The scheme bears full cost of the projects as per prescribed financial norms and also provides stipend and post placement support to the candidate.

Green Skill Development Programme (2017) [9]: The Green Skill Development Programme (GSDP) aims to fill the gap between the need and availability of skill sets to help sustain environment at various levels. It enhances the employability of people in jobs that contribute to preserving or restoring the quality of the environment with help of the 67 centres established by the government. The first GSDP course was formulated for skilling biodiversity conservationists (basic course) and Para-taxonomists (Advance Course) of 3 months’ duration each on a pilot basis in ten select districts of the country. BSI and ZSI were the nodal centres for the pilot programme.

All Indian Computer Siksha Mission (1999) [10]: The scheme has been in addition to the existing Rajeev Gandhi Computer Saksharta Mission. The Government of India has initiated Computer skill centres in association with the third-party partners where, candidates can get certificate courses, diploma courses, advance diploma courses, vocational courses to showcase their technical skills for better employment opportunities. AICSM has trained above 1.5 lakh till 2017 and placed above 42,000 students.

Challenges
India has more than 600 million people under the age of 25 years with a potential of being the most employable country in Asia Pacific. Every year, 25 million people attain the age of 21 years and come to work, so skilling such a large number is not easy. According to All India Survey of Higher Education by Azim Premji University of the 8 million students who graduate every year, only around 1 million receive professional degrees. Hence, skill development of youth who are non-graduates is a priority area. The Government of India has been working since 2009 by having launched The National Skills Development Corporation (NSDC). The Pradhan Mantri Kaushal Vikas Yojana was launched in 2015 with a separate budget of Rs 15 billion. There is also scope for skill development in the field of agriculture, horticulture, dairy, poultry etc. and this can facilitate in generating better quality jobs for the youth in rural India. This is an area where more focus is needed. Despite these many years of working on the problem there still persist two major challenges: Informational asymmetries and limited quality assurance.

A major hitch in India is that except for some leading companies, majority of the enterprises do not take much interest in supporting the skill development initiative. Many enterprises misuse the young trainees as a substitute for regular workers to achieve a cost arbitrage by utilising these youngsters to do regular nature of jobs in the garb of training; this is especially true with reference to NEEM trainees. Industry has a role and responsibility as part of corporate citizenship and needs to wholeheartedly support the skill development initiative in the nation’s interest.

A major challenge is that the youth today is inclined towards desiring to have higher education by studying in the college and university rather than acquiring skills under various schemes listed above. For this barrier to break enterprises and citizens will not only have to pay well to skilled category of workers but also treat them with dignity, so that they are attracted towards acquiring skills. In the western world, the skilled handy man who by and large is self-employed is paid well and treated well, so that he/she is happy doing that work rather than going in for higher college and university education.

References
1.https://www.thehindu.com/education/careers/A-potted-historyof-skilling-in-India/article17287918.ece
2.http://ddugky.gov.in/content/about-us-0
3.https://www.india.gov.in/spotlight/pradhan-mantri-kaushal-vikasyojana#tab=tab-1
4.http://disabilityaffairs.gov.in/upload/uploadfiles/files/fas1.pdf
5.http://www.mescindia.org/naps.php
6.https://dgt.gov.in/CTS
7.https://nsdcindia.org/pmkk
8.http://www.minorityaffairs.gov.in/schemesperformance/seekho-aurkamaolearn-earn-scheme-skill-development-minorities
9.http://www.gsdp-envis.gov.in/
10.https://www.aicsm.com/aicsmAimGoal.htm

Acknowledgement
The author is grateful to Mr. Vineet Kumar Oswal, First Year student of Post Graduate Programme in Management at Indian Institute of Management (IIM) Sirmaur for compiling information on the 9 schemes listed under Skill India. Published in November 2019 issue of Current Labour Reports and Arbiter.

The author is Past President of Industrial Relations Institute of India (IRII), Former Senior Employers’ Specialist for South Asian Region with Internation.al Labour Organization (ILO) and Former Corporate Head of HR with ACC and Former Corporate Head of Manufacturing and HR with Novartis India. He can be contacted on: Email: rajenmehrotra@gmail.com

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Solving AF Processing Challenge with Advanced Combustion

Published

on

By

Shares

Alternative fuels reduce cement plants’ carbon footprint, but infrastructure challenges limit adoption. Technologies like the HOTDISC® Reactor help overcome these barriers.

Alternative fuels are a relatively straightforward and readily available means of reducing a cement plant’s carbon footprint. The technology is proven and well used worldwide, and with the right controls in place the switch from fossil fuels to waste-derived fuels does not impact the quality of the end product. In some countries, cement plants are achieving near 100 per cent substitution in the calciner and high levels of substitution in the kiln. However, this trend is not universal, and some countries are struggling to achieve a thermal substitution rate (TSR) of 25 per cent. In this article, we will look at the obstacles to alternative fuels use and the technology that is available to overcome them.

Advantages of alternative fuels
Alternative fuels offer three key environmental advantages.
1) A lower carbon alternative to coal or petcoke.
2) A pathway for waste that might otherwise be landfilled, including hazardous waste.
3) An alternative to waste incineration, which is typically done at lower temperatures where emissions tend to be higher.
In addition, the cost of alternative fuels can often be lower than fossil fuels and is not subject to the fluctuations of the energy market.
The sources of alternative fuels are many and varied – to the extent that the supply chain looks vastly different from one region to the next. For example, whereas India has abundant sources of biomass such as rice husk, in Western Europe there are plentiful supplies of refuse-derived fuel (RDF). This is partly a matter of industry and partly of infrastructure. But given the importance of reducing the cement industry’s reliance on coal, a lack of infrastructure must not prevent greater utilisation of alternative fuels – which is why FLSmidth Cement has for some time been developing alternative fuels solutions that reduce the burden of pre-processing and enable cement plants to more easily and more cost-effectively utilise a wide variety of waste streams.

A solution for all waste
Direct calciner injection may seem like the simplest way to replace fossil fuels with alternatives. However, it’s not always the best. The options for alternative fuels are limited by the necessity to pre-process fuel in preparation for burning, which, as stated, requires established infrastructure, or additional facilities at the plant.
Though the CAPEX cost of direct calciner injection is low, the calciner fuel substitution rate is also low, so this method doesn’t enable cement plants to optimise the potential for fuel replacement. Plant operators must also consider the impact on the process of direct injection, which doesn’t allow the long residence time that can be required to reduce process volatility. No plant wants to contend with greater instability or an increase in emissions from adding alternative fuels to the mix. Fortunately, direct calciner injection is not the only option. There are other ways of extracting energy from waste that require no pre-processing at all.
The HOTDISC® Reactor can handle a wide variety of solid waste in sizes up to 1.2m – from sludge or grains to whole truck tyres. There’s no need for expensive shredding or pre-drying, or any pre-processing, which removes one of the obstacles to adopting alternative fuels. The broad range of accepted fuel types also means cement plants are free to shop the market and not tied into one supplier. This makes it a very cost-effective solution because cement plants can select the lowest cost fuel without worrying about the quality.

How does the HOTDISC® work?
The HOTDISC® is a moving hearth furnace that is integrated into the pyroprocess below the calciner bottom and above the kiln riser. Coarse alternative fuels are fed onto a slowly rotating disc. Hot tertiary air is directed into the HOTDISC to provide an oxidising atmosphere for the alternative fuel to burn. As the alternative fuel slowly travels around approximately 270 degrees on the rotating disc, almost all of it fully combusts. Depending on the nature of the alternative fuel (size, heat content, moisture, etc.), the rotational speed of the HOTDISC can be adjusted to optimise the residence time (up to 45 minutes) and combustion rate. In addition, the temperature inside the HOTDISC is controlled by directing a portion of the preheated raw meal into the HOTDISC. The HOTDISC operation generates a controlled mix of hot gases, combustion residue (ash) and calcined raw meal that exits the HOTDISC. The combustion gases and finer materials are carried with the hot gases into the bottom of the calciner, while the coarser residues meet a scraper at the end of the 270 degrees rotation, where they are directed down into the riser duct. From there, this material falls into the kiln and is incorporated into the clinker.
The HOTDISC is designed to achieve a calciner substitution rate in the range of 50 to 80 per cent – or even higher – of the calciner fuel. Results vary by the specific plant conditions and fuel specification, but based on over 20 years of plant data it is possible to predict the substitution rate in each application.
The HOTDISC was originally designed for use with In-Line Calciners (ILCs), but new models are now available for use with Separate Line Calciners (SLCs), enabling the HOTDISC to be installed under the calciner and still deliver the same benefits. The HOTDISC-S is installed in the bottom part of the SLC calciner on the ground, the reject will be cooled and transported to a container or back into the system, gas flow and AF flow operates counter current.
For cement plants that wanted to utilise a wide range of alternative fuels, the HOTDISC®-S is a cost-saving solution that avoids the expense of changing the SLC to an ILC while enabling a high substitution of alternative fuels. Another model, the HOTDISC®-HMT (Hot Material Transport), enables quicker and easier installation of the HOTDISC in existing plants. Instead of directly integrating the exit of the HOTDISC reactor to the calciner and riser duct, the new layout allows the HOTDISC reactor to be mounted two to five metres away. It is then connected to the calciner and riser duct via a hot material transport chute for gas flows and combustion ashes.

Further advances in alternative fuels technologies
Low or varying quality alternative fuels can be another inhibitor to substitution, given the requirements of the relatively delicate cement pyro process. FLSmidth Cement has expended considerable R&D effort developing solutions that can accommodate a wide range of fuel types, knowing that this is the easiest path to greater substitution and ultimately the near-elimination of fossil fuels. The FUELFLEX® Pyrolyzer was one result of this effort and offers an exciting prospect for cement plants wishing to achieve near – 100 per cent substitution in the calciner and minimise NOx emissions.

The FUELFLEX® Pyrolyzer utilises hot meal from the lower preheater cyclones (yellow arrows) to dry and pyrolyze RDF or biomass. Either part or the full stream of hot meal from a lower preheater cyclone is admitted to the Pyrolyzer via the U-Lock (controlled by two dividing gates). The U-Lock fluidises the hot meal, forming a U-shaped gas lock that prevents pyrolysis gases from flowing backwards through the process. Subsequently the hot meal stream flows into the Pyrolyzer vessel, which also has a U-shaped lower aerated section to contain the hot fluidised meal. Fuel is pneumatically fed to the pyrolyzer vessel wherein through contact with the hot meal, it is dried, heated and pyrolyzed to form reactive gases and char. The gases push upwards into the main pyrolyzer vessels while the char falls down into the fluidised meal bed, before being reunited and fed as a very reactive stream into the calciner. Aeration panels are used to fluidise the hot meal and drain gates are used to drain out debris and meal from the pyrolyzer to the kiln system in a controlled manner. The reactive stream of pyrolysis products reacts with rotary kiln NO by so-called ‘re-burning’ reactions, utilising pyrolysis gases to convert NO into free N2 in the reduction zone prior to mixing with preheated combustion air in the calciner. In addition, the full fuel pyrolysis preceding the calciner helps limit calciner NOx formation by limiting access to oxygen when burning.

By using the FUELFLEX® Pyrolyzer, cement plants can achieve up to 100 per cent fossil fuel replacement in the calciner, with the following benefits:

  • Reduced CO2 emissions, as net CO2 emissions from alternative fuels generally are lower than from fossil fuels.
  • Increased utilisation of local waste streams, avoiding the need to dispose of or store this waste in other ways.
  • Reduced fuel costs, especially in times of fluctuating energy prices.
  • Reduced fossil fuel use saves the associated environmental impact of fossil fuel extraction and transport.

Conclusion
The challenge is on: cement plants must reduce carbon emissions now, and continue to do so for the next several decades until the target of net zero is met. While there are some solutions that are not ready yet – i.e. carbon capture – alternative fuels offer a valuable means of reducing the cement industry’s environmental impact immediately, with the added benefit of providing a controlled means of waste disposal. New and proven technologies will help the cement industry to overcome alternative fuel supply chain problems and achieve a dramatic reduction in fossil fuel use.

(Communication by the management of the company)

Continue Reading

Concrete

We consistently push the boundaries of technology

Published

on

By

Shares

Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.

SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.

Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.

How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.

Key features include:

  • High efficiency: Ensures optimal throughput for large volumes of waste.
  • Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
  • Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.

What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:

  • Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
  • Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
  • Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
  • Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.

What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.

This includes:

  • Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
  • Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
  • Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
  • Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.

How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:

  • Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
  • AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
  • Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
  • Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.

What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:

  • AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
  • Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
  • Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
  • Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
  • Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.

(Communication by the management of the company)

Continue Reading

Concrete

Technology is critical to our eco-friendly logistics

Published

on

By

Shares

Driving sustainable logistics with EV-powered supply chains, Pushpank Kaushik, CEO, Jassper Shipping, explains the correlation between reduced carbon emissions and efficient deliveries.

Jassper Shipping is advancing green logistics by integrating electric vehicles (EVs) into its supply chain and leveraging a transportation management system (TMS) to track and reduce carbon emissions at the shipment level. In this interview, Pushpank Kaushik, CEO, Jassper Shipping, tells us about the gameplan to achieve the goal of net-zero carbon emissions by 2035, and being a pioneer in shaping the future of eco-friendly logistics in India.

How is Jassper Shipping integrating green logistics into its shipping operations?
Jassper Shipping’s green logistics are being integrated by expanding its fleet of EV, with 58 already in operation. Emission-reduction strategies and carbon offset programmes are being implemented in sea logistics to reduce environmental impact. With a strategically mapped network of 380 locations across India, including both major states and smaller towns, sustainable and accessible logistics solutions are being ensured supported by partnerships with FMCG brands and pharmaceutical companies as well as supermarket chains like D-Mart and Big Basket.
A transportation management system is also used to track and measure carbon dioxide emissions on a cargo basis. Jassper Shipping’s efforts remain focused on creating a future-ready, sustainable logistics network.

What sustainable practices are you implementing to reduce carbon emissions?
Jassper Shipping prioritises sustainability, with several measures in place to reduce carbon emissions. The inclusion of electric vehicles (EVs) into the distribution network represents a significant advancement, with 58 EVs currently operational. This change not only decreases the company’s carbon footprint, but it also improves operating efficiency, eliminates fuel cost uncertainty, and helps delivery partners by lowering costs. Collaboration with clients enhances sustainability efforts by producing eco-friendly supply chain solutions with low environmental effect. A transportation management system helps track and measure carbon dioxide emissions at the shipment level, ensuring a data-driven approach to sustainability. Participation in carbon offset programmes further contributes to reducing the environmental impact of shipments.

Are you investing in energy-efficient vessels or alternative fuels?
No, currently we are not investing in energy-efficient vessels or alternative fuels. Instead, our focus at Jassper Shipping is on developing EV fleets and strengthening a sustainable supply chain network in India to support green commerce solutions.

How does technology help Jassper optimise eco-friendly logistics solutions?
Technology is critical to our eco-friendly logistics. Our transportation management system (TMS) monitors and assesses carbon emissions,
allowing for more environmentally responsible operations. The growth of our electric vehicle (EV) fleet decreases environmental impact while assuring efficient transportation.

What challenges do you face in making shipping more environmentally sustainable?
The main challenge in making shipping more environmentally sustainable is the lack of global agreement and consistent efforts. Different countries and organisations have varying levels of commitment and policies, making it difficult to implement uniform sustainable solutions. Without widespread cooperation, progress toward greener shipping practices remains slow.

What are Jassper Shipping’s long-term goals for achieving greener logistics in Asia?
Jassper Shipping is dedicated to reducing carbon footprints, including those of clients. Emission-reduction plans and carbon offset investments aim to achieve net-zero carbon emissions by 2035. Over the next two quarters, the number of EVs in the fleet will increase from 58 to 150. The last-mile delivery supply chain is becoming more sustainable and efficient with EV integration while maintaining high-quality service.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds