Connect with us

Concrete

Concrete: Potential to grow

Published

on

Shares

No wonder, India’s concrete industry is a vital part of our economy, directly and indirectly. India has a lot of potential for development in the infrastructure and construction sector and the concrete sector is expected to largely benefit from it.

The beauty of cement is that it is always converted into value added products, and standalone use of cement is very rare. The first major value addition of cement is concrete, which is a heterogeneous mixture of different components where cement plays role of a gum. Sand and stone chips are a few other important ingredients of concrete. Sand sources across globe are depleting fast and therefore engineering community had to find an alternative and it is manufactured sand.

Ready-mix concrete is just an extension of concrete. Globally, the ready-mix concrete market is anticipated to register a CAGR of 8 per cent during the period 2017-2023. The manufacturing of ready-mix concrete and delivering it through a transit mixer allows the integration of precise concrete in construction, thus making it strong, sturdy and long lasting.

Considering the global scenario, the Asia Pacific region is estimated to acquire the major share in the global market and is predicted to retain its dominance in the long run. It is due to the rising number of latest infrastructural projects especially in economies like Singapore, India, Thailand, and China. With the rapid urbanisation and industrialisation in these areas, the market is anticipated to flourish. Moreover, the ever-increasing population, favourable government policies, high availability of skilled workforce and cheap resources, and low labour and operational costs are contributing to the market growth.

The advent of new infrastructure construction projects is also estimated to generate an inflated demand for the ready-mix concrete market. In this region, China has accounted for the lion’s share, owing to the refurbishment and expansion of old structures like railway terminals, and airports, along with the implementation of novel infrastructural projects. India is also considered as a driving cause for the market owing to the development of smart cities.

The worldwide cement production is 4.1 billion metric tonnes (2018). Assuming 75 per cent of cement is used in concrete, we can imagine the quantum of concrete produced considering typically 300 kg of cement is consumed per cubic meter.

Concrete products are often the most sustainable and have the potential for a very long service life, but because concrete is used in large quantities, its use does have a global impact.

It is interesting to know, though ready-mix concrete was patented in the year 1903, it really took off somewhere around 1960s. It gained momentum with fast-track projects where investments done were the key issue and time to complete the projects was critical. There have been many advantages of using ready-mix concrete.

Quality of concrete produced at plant is much superior to what is produced at site. There is strict control over the testing of materials, process parameters and continuous monitoring of key practices during the manufacture. Speed in the construction practices followed in ready-mix concrete plant is followed continuously by having mechanised operations. The output obtained from a site mix concrete plant using an 8/12 mixer is 4 to 5 metric cubes per hour, which is 30-60 metric cubes per hour in a ready mix concrete plant. The other advantage, cement is saved and the dust caused is reduced as ready mix concrete makes use of bulk cement instead of bags of cement. There is saving of cement on account of use of cementious materials like fly ash and slag. The other major benefit is the engineer at site is able to concentrate on engineering jobs than paying attention to material procurement and material management. There is less dependency on human labour, which leads to less of errors.

The major disadvantage of ready mixed concrete is the traffic congestions during the movement of transit of concrete can result in setting of concrete. This will hence require addition of admixtures to delay the setting period. In our country, we have additional tax on ready-mix concrete which when produced manually at site is not levied. One of the major cost components in ready-mix concrete is the transport cost, which is close to 30-35 per cent of the realisation, which is quite significant. Today ready mix business faces many challenges. The major one is shortage of sand and aggregates. The other is fulfilment of environment regulations. The citizens becoming more aware of their rights sometimes lead to conflict of interest. All of sudden the concrete producer gets a closure notice.

Precast
Precast is corollary to ready-mix concrete (For more details on precast, read Devendra Kumar Pandey’s interview in this issue). It is difficult to imagine precast factory without using a batching plant to produce concrete. The list of products coming under precast is pretty long starting from normal covers, lamp poles, railway sleepers, ready to use fence, doors and window frames, decorative facades, stair case, water tanks, toilets etc. The number of metro railway projects undergoing are using many precast shapes in the job. Precast products are factory made shapes and then transported to the locations whereas cast in situ concrete shapes are cast at locations in one monolith piece.

Precast shapes are cast in small shapes and then bolted together. It is a technology used for producing large number of pieces repeatedly. Therefore it is often used for mass housing projects. Typically in mass housing, a factory is set up close to a site, and different sections of house are produced and then assembled at location. In case if cast shapes have to be transported to a distance then precast may not turn out to be a cost-effective option. This enhances the speed of construction. Same is the case of railway sleepers. The Department of Railways have set up sleeper factories at various locations where rail tracks are being laid. Sometime special equipment are required for erection of precast shapes at site and which may be little expensive. Joining different precast shapes is another vulnerable area in precast construction. In case if cast shapes have to be transported to a distance then precast may not turn out to be a cost effective option.

In short, concrete provides us immense opportunities and imagination to make effective use of the man-made material.

VIKAS DAMLE

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds