Connect with us

Concrete

Optimising Concrete Precasting

Published

on

Shares

Precast concrete technology adds value and reduce cost of the project as compared to cast in-situ built.

In India, there is a huge demand for housing which neither the cities nor the housing sector is prepared for. The construction industry is also facing problems such as shortage of skilled labour, poor workmanship, low productivity and quality of construction plus time and cost overruns, to name a few. Using precast (pre-engineered pre-cast) concrete method improves the speed of construction and saves huge cost.

Concept of precast construction includes those buildings, where the majority of structural components are standardised and produced in bulk quantity which, later, together with other pieces, becomes part of a larger structure. These precast concrete elements are prepared, cast and hardened at specially-equipped plants with a permanent location in plants at project site or in a location away from the building site, and then transported to the site for assembly.

In order to get the best result from the precast concrete technology, experienced precast architects or structural engineers are required, along with well-trained and experienced erection crews are also must to carry out the site work with utmost satisfaction. Precast concrete products do not need any finishing (such as plastering) on site. By using coloured aggregates and form liners beautiful patterns can be achieved on facades/outer load bearing walls of building.

The precast concrete building technology can be efficiently and effectively used for townships, affordable and low-cost mass housing, IT/ITES parks and SEZs at a much competitive cost and on-time schedule to be adopted in the construction sector of India.

Advantages of precast concrete elements

  • Production in controlled environment results in high quality of factory-made strong durable products
  • Repetition of standard precast elements will lead to cost reduction
  • Plastering on precast walls and floor slabs is not needed because of smooth finishing
  • Production can continue in any weather condition
  • Better health and safety standards as compared to the conventional construction methods
  • Project can be better planned, managed and controlled. High speed can be achieved
  • Fast construction, less manpower required on site, and no shuttering required on site
  • Door and window frames can be installed in the wall panels before erection
  • Electricity conduits, pipes and boxes can be embedded in precast panels
  • Large span floor system leads to more flexibility as internal columns are avoided
  • Thin precast walls and facade panels increase the carpet area and reduced self-weight, increased life load
  • Precast concrete is a durable material, which requires less maintenance
  • Precise reinforcing during prefabrication saves steel
  • Precise consumption of all material used
  • Precast plant at site can reduce transportation distance and increase speed of erection

Precast concrete technology adds value and reduce cost of the project as compared to cast in-situ built versus precast:

  • Construction time cost = 50-60 per cent
  • Labour numbers on site cost = 50-60 per cent
  • Waste material on site cost = 40-45 per cent
  • Cost due to less snagging = 40-50 per cent

Indiapreacast.com gives full support for complete range of precast plants and machinery for manufacturing all types of precast concrete elements, including that of affordable/mass housing (even for on-site plants) like:

  • Load bearing hollow core planks
  • Lightweight non-load bearing wall panels, boundary wall, etc.
  • Can manufacture panels at project site
  • Saves transportation and government taxes

Project investment for 100 x 600 mm: Less than Rs 1 crore at Indiaprecast plant. European plants: Rs 8-12 crore. Project requirement: Land required: 1.5 acre plus, having length to width ratio 5:1. Power: 50 Kw is required for only wall panel production. Water: 10,000 liters per day. Labour: Average skilled labours 12 to 15. Raw Material: Cement, sand, aggregate 6 to10 mm/LECA: 2 to 10mm. Speed of Extruder m/c. -1.6 m/min.
Plant capacity: 400 m2/12 hours shifts.

Plants for pallet circulating system (PCS)/carousel system
In hi-tech and high-capacity computer controlled pallet circulating system/carousel system, the production of solid and sandwich elements is highly flexible. The system has been optimised for production of elements up to 12m in length and 4m in height. The employees specialise on individual working steps and are therefore more reliable and competent at their supervising workstations.

Production pallets are transported between the workstations using two side shifters, two concrete spreaders supplying concrete in either grey or coloured form, two vibrating units ensure that the concrete is compacted correctly and power trowels are used to guarantee smooth surfaces, insulated curing racks with 30 places provide the ideal conditions for element curing. A plotter, cleaning and oiling equipment and tilting station all serve to boost the efficiency of the system.

Concept of a carousel system

  • Concrete elements are produced on work tables (pallets)
  • Pallets are transported to the working stations, shuttering, reinforcement, concreting and compaction
  • After the curing time of eight hours at the curing places the finished elements will be removed and the empty pallet will be transported to the next working station
  • There are various methods for making affordable/mass/EWS/LIG housing by precast technology. Some of the most comm-only used are:

Method A
Suitable for ground up to fourth floor. Advantage of this method is that it is very low on investment

  • Plinth, beam and column – made from cast-in situ.
  • Floor and roof – made from precast, pre-stressed load bearing hollow core concrete slab/planks. (120mm thick slab x 600/1,200 mm width depending on requirement and design) along with structural screed of 50 mm.
  • External walls – made from hollow core non-load bearing lightweight interlocking wall panels 120/150 mm thick x 600 mm width or from AAC block/hollow block/solid Block. All to be plastered from inside and outside.
  • Internal partition – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required)
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods

Method B

Suitable ground up to 13th floor. Advantage of this method is that it is average on investment.

  • Solid load bearing outer wall are precast (160/200 mm thick other dimension as per design). No beam and column. Made by plants for pallet circulating system with central shifter or by plants for pallet in-line – vibrated and tilted by mobile shuttle.
  • Floor and roof – made from precast, pre-stressed load bearing hollow core concrete slab/planks. (150/200/250 mm thick slab x 1,200 mm width depending on the requirement and design) along with structural screed of 50 mm.
  • Internal partition – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required).
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods.

Method C
Suitable for ground up to 23rd floor. Advantage of this method is: fast construction but little high in investment as compared to above.

  • External walls solid load bearing type of 160/200/250 mm thick depending on the requirement and design. Made by plants for pallet circulating system with central shifter or by plants for pallet in-line – vibrated and tilted by mobile shuttle.
  • Floors/roof from half floor slab/semi-finished floor slab (up to 3 m width x 10 m long x 40/60 mm thick) made with lattice girder/truss for floor and roof. Plants for filigree/half floor slab with lattice girder on long line casting bed. (Including pre-stressed)
  • Internal partition walls – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required).
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods.
  • Precast, pre-stressed load bearing hollow core concrete slab used for floor and roof are made by extrusion process on steel bed/concrete bed. Size available from 120 x 600 mm, 150 x 1,200 mm, 200 x 1,200 mm, 250 x 1,200 mm, 300 x 1,200 mm, 380 x 1,200 mm. The span depends on the load, steel reinforcement and thickness of the slab.
  • Hollow core non-load bearing lightweight interlocking wall panels for making partition walls are made by extrusion process on concrete bed/or automatic plant. Size available from 100 x 600, 120 x 600 mm, 150 x 600 mm. Most commonly used is 100 x 600 mm.

About the AUTHOR:
Vijay Shah
is a Consultant for Precast Plant and Machinery and its technology.?He is a mechanical engineer, having 40 years of experience and more than eight years in the precast industry.’He has visited major precast plant manufacturers and their clients in the world.

Web: www.indiaprecast.com

He can be contacted on:

Email: sogovijay@hotmail.com

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Lower sales realization impacts margins for cement makers in Q2 FY25

The industry encountered several challenges, including an extended monsoon season.

Published

on

By

Shares

Major cement manufacturers reported a decline in margins for the September quarter, primarily due to lower prices, which led to decreased sales realization.

With the exception of three leading cement producers—UltraTech Cement, Ambuja Cement, and Dalmia Bharat—smaller companies, including Nuvoco Vistas Corp, JK Cement, Birla Corporation, and Heidelberg Cement, experienced a drop in both topline and sales volume during the second quarter of the current fiscal year.

The industry encountered several challenges, including an extended monsoon season, flooding, and a slow recovery in government demand, all contributing to weak overall demand.

Despite these challenges, power, fuel, and other costs largely remained stable across the industry. The all-India average cement price was approximately Rs 348 per 50 kg bag in June 2024, which represented an 11 per cent year-on-year decrease to Rs 330 per bag in September, although it saw a month-on-month increase of 2 per cent.

In the first half of FY25, cement prices declined by 10 per cent year-on-year, settling at Rs 330 per bag. This decline was notable compared to the previous year’s average prices of Rs 365 per bag and Rs 375 per bag in FY23, as reported by Icra.

Leading cement manufacturer UltraTech reported a capacity utilization rate of 68 per cent, with a 3 per cent growth in volume. However, its sales realization for grey cement declined by 8.4 per cent year-on-year and 2.9 per cent quarter-on-quarter during the July-September period.

In response to a query regarding cement prices during the earnings call, UltraTech’s CFO Atul Daga indicated that there had been an improvement in prices from August to September and noted that prices remained steady from September to October. He mentioned that the prices had risen from Rs 347 in August to approximately Rs 354 currently.

Continue Reading

Concrete

Steel companies face Rs 89,000 crore inventory crisis

Steel firms grapple with Rs 89,000 crore stockpile amid import surge.

Published

on

By

Shares

Steel companies in India are facing a significant challenge as they contend with an inventory crisis valued at approximately Rs 89,000 crore. This situation has arisen due to a notable increase in steel imports, which has put pressure on domestic producers struggling to maintain sales in a competitive market.

The surge in imports has been fueled by various factors, including fluctuations in global steel prices and increased production capacities in exporting countries. As a result, domestic steel manufacturers have found it difficult to compete, leading to rising stock levels of unsold products. This inventory buildup has forced several companies to reassess their production strategies and pricing models.

The financial impact of this inventory crisis is profound, affecting cash flows and profitability for many steel firms. With domestic demand remaining volatile, the pressure to reduce prices has increased, further complicating the situation for manufacturers who are already grappling with elevated production costs.

Industry experts are urging policymakers to consider measures that can support local steel producers, such as imposing tariffs on imports or enhancing trade regulations. This would help to protect the domestic market and ensure that Indian steel companies can compete more effectively.

As the steel sector navigates these challenges, stakeholders are closely monitoring the situation, hoping for a turnaround that can stabilize the market and restore confidence among investors. The current dynamics emphasize the need for a robust strategy to bolster domestic production and mitigate the risks associated with excessive imports.

Continue Reading

Concrete

JSW and POSCO collaborate for steel plant

JSW Group and POSCO ink MoU for steel project.

Published

on

By

Shares

JSW Group has signed a Memorandum of Understanding (MoU) with South Korea’s POSCO Group to develop an integrated steel plant in India. This collaboration aims to enhance India’s steel production capacity and contribute to the country’s growing manufacturing sector.

The agreement was formalized during a recent meeting between executives from both companies, highlighting their commitment to sustainable development and technological innovation in the steel industry. The planned facility will incorporate advanced manufacturing processes and adhere to environmentally friendly practices, aligning with global standards for sustainability.

JSW Group, a leader in the Indian steel industry, has expressed confidence that the joint venture with POSCO will bolster its position in the market and accelerate growth. The project is expected to attract significant investments, generating thousands of jobs in the region and contributing to local economies.

As India aims to boost its steel output to meet domestic demand and support infrastructure projects, this partnership signifies a crucial step toward achieving those goals. Both companies are committed to leveraging their expertise to develop a state-of-the-art facility that will produce high-quality steel products while minimizing environmental impact.

This initiative also reflects the increasing collaboration between Indian and international firms to enhance industrial capabilities and foster economic growth. The MoU sets the stage for a promising future in the Indian steel sector, emphasizing innovation and sustainability as key drivers of success.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds