Connect with us

Concrete

Optimising Concrete Precasting

Published

on

Shares

Precast concrete technology adds value and reduce cost of the project as compared to cast in-situ built.

In India, there is a huge demand for housing which neither the cities nor the housing sector is prepared for. The construction industry is also facing problems such as shortage of skilled labour, poor workmanship, low productivity and quality of construction plus time and cost overruns, to name a few. Using precast (pre-engineered pre-cast) concrete method improves the speed of construction and saves huge cost.

Concept of precast construction includes those buildings, where the majority of structural components are standardised and produced in bulk quantity which, later, together with other pieces, becomes part of a larger structure. These precast concrete elements are prepared, cast and hardened at specially-equipped plants with a permanent location in plants at project site or in a location away from the building site, and then transported to the site for assembly.

In order to get the best result from the precast concrete technology, experienced precast architects or structural engineers are required, along with well-trained and experienced erection crews are also must to carry out the site work with utmost satisfaction. Precast concrete products do not need any finishing (such as plastering) on site. By using coloured aggregates and form liners beautiful patterns can be achieved on facades/outer load bearing walls of building.

The precast concrete building technology can be efficiently and effectively used for townships, affordable and low-cost mass housing, IT/ITES parks and SEZs at a much competitive cost and on-time schedule to be adopted in the construction sector of India.

Advantages of precast concrete elements

  • Production in controlled environment results in high quality of factory-made strong durable products
  • Repetition of standard precast elements will lead to cost reduction
  • Plastering on precast walls and floor slabs is not needed because of smooth finishing
  • Production can continue in any weather condition
  • Better health and safety standards as compared to the conventional construction methods
  • Project can be better planned, managed and controlled. High speed can be achieved
  • Fast construction, less manpower required on site, and no shuttering required on site
  • Door and window frames can be installed in the wall panels before erection
  • Electricity conduits, pipes and boxes can be embedded in precast panels
  • Large span floor system leads to more flexibility as internal columns are avoided
  • Thin precast walls and facade panels increase the carpet area and reduced self-weight, increased life load
  • Precast concrete is a durable material, which requires less maintenance
  • Precise reinforcing during prefabrication saves steel
  • Precise consumption of all material used
  • Precast plant at site can reduce transportation distance and increase speed of erection

Precast concrete technology adds value and reduce cost of the project as compared to cast in-situ built versus precast:

  • Construction time cost = 50-60 per cent
  • Labour numbers on site cost = 50-60 per cent
  • Waste material on site cost = 40-45 per cent
  • Cost due to less snagging = 40-50 per cent

Indiapreacast.com gives full support for complete range of precast plants and machinery for manufacturing all types of precast concrete elements, including that of affordable/mass housing (even for on-site plants) like:

  • Load bearing hollow core planks
  • Lightweight non-load bearing wall panels, boundary wall, etc.
  • Can manufacture panels at project site
  • Saves transportation and government taxes

Project investment for 100 x 600 mm: Less than Rs 1 crore at Indiaprecast plant. European plants: Rs 8-12 crore. Project requirement: Land required: 1.5 acre plus, having length to width ratio 5:1. Power: 50 Kw is required for only wall panel production. Water: 10,000 liters per day. Labour: Average skilled labours 12 to 15. Raw Material: Cement, sand, aggregate 6 to10 mm/LECA: 2 to 10mm. Speed of Extruder m/c. -1.6 m/min.
Plant capacity: 400 m2/12 hours shifts.

Plants for pallet circulating system (PCS)/carousel system
In hi-tech and high-capacity computer controlled pallet circulating system/carousel system, the production of solid and sandwich elements is highly flexible. The system has been optimised for production of elements up to 12m in length and 4m in height. The employees specialise on individual working steps and are therefore more reliable and competent at their supervising workstations.

Production pallets are transported between the workstations using two side shifters, two concrete spreaders supplying concrete in either grey or coloured form, two vibrating units ensure that the concrete is compacted correctly and power trowels are used to guarantee smooth surfaces, insulated curing racks with 30 places provide the ideal conditions for element curing. A plotter, cleaning and oiling equipment and tilting station all serve to boost the efficiency of the system.

Concept of a carousel system

  • Concrete elements are produced on work tables (pallets)
  • Pallets are transported to the working stations, shuttering, reinforcement, concreting and compaction
  • After the curing time of eight hours at the curing places the finished elements will be removed and the empty pallet will be transported to the next working station
  • There are various methods for making affordable/mass/EWS/LIG housing by precast technology. Some of the most comm-only used are:

Method A
Suitable for ground up to fourth floor. Advantage of this method is that it is very low on investment

  • Plinth, beam and column – made from cast-in situ.
  • Floor and roof – made from precast, pre-stressed load bearing hollow core concrete slab/planks. (120mm thick slab x 600/1,200 mm width depending on requirement and design) along with structural screed of 50 mm.
  • External walls – made from hollow core non-load bearing lightweight interlocking wall panels 120/150 mm thick x 600 mm width or from AAC block/hollow block/solid Block. All to be plastered from inside and outside.
  • Internal partition – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required)
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods

Method B

Suitable ground up to 13th floor. Advantage of this method is that it is average on investment.

  • Solid load bearing outer wall are precast (160/200 mm thick other dimension as per design). No beam and column. Made by plants for pallet circulating system with central shifter or by plants for pallet in-line – vibrated and tilted by mobile shuttle.
  • Floor and roof – made from precast, pre-stressed load bearing hollow core concrete slab/planks. (150/200/250 mm thick slab x 1,200 mm width depending on the requirement and design) along with structural screed of 50 mm.
  • Internal partition – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required).
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods.

Method C
Suitable for ground up to 23rd floor. Advantage of this method is: fast construction but little high in investment as compared to above.

  • External walls solid load bearing type of 160/200/250 mm thick depending on the requirement and design. Made by plants for pallet circulating system with central shifter or by plants for pallet in-line – vibrated and tilted by mobile shuttle.
  • Floors/roof from half floor slab/semi-finished floor slab (up to 3 m width x 10 m long x 40/60 mm thick) made with lattice girder/truss for floor and roof. Plants for filigree/half floor slab with lattice girder on long line casting bed. (Including pre-stressed)
  • Internal partition walls – made from hollow core non-load bearing lightweight interlocking wall panels (100 mm thick x 600 mm width length to cut as per requirement from long slab only skim coat plaster required).
  • Other items made from molds include staircase, balcony mold, lift shaft and waterproof toilet pods.
  • Precast, pre-stressed load bearing hollow core concrete slab used for floor and roof are made by extrusion process on steel bed/concrete bed. Size available from 120 x 600 mm, 150 x 1,200 mm, 200 x 1,200 mm, 250 x 1,200 mm, 300 x 1,200 mm, 380 x 1,200 mm. The span depends on the load, steel reinforcement and thickness of the slab.
  • Hollow core non-load bearing lightweight interlocking wall panels for making partition walls are made by extrusion process on concrete bed/or automatic plant. Size available from 100 x 600, 120 x 600 mm, 150 x 600 mm. Most commonly used is 100 x 600 mm.

About the AUTHOR:
Vijay Shah
is a Consultant for Precast Plant and Machinery and its technology.?He is a mechanical engineer, having 40 years of experience and more than eight years in the precast industry.’He has visited major precast plant manufacturers and their clients in the world.

Web: www.indiaprecast.com

He can be contacted on:

Email: sogovijay@hotmail.com

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Jefferies’ Optimism Fuels Cement Stock Rally

The industry is aiming price hikes of Rs 10-15 per bag in December.

Published

on

By

Shares

Cement stocks surged over 5% on Monday, driven by Jefferies’ positive outlook on demand recovery, supported by increased government capital expenditure and favourable price trends.

JK Cement led the rally with a 5.3% jump, while UltraTech Cement rose 3.82%, making it the top performer on the Nifty 50. Dalmia Bharat and Grasim Industries gained over 3% each, with Shree Cement and Ambuja Cement adding 2.77% and 1.32%, respectively.

“Cement stocks have been consolidating without significant upward movement for over a year,” noted Vikas Jain, head of research at Reliance Securities. “The Jefferies report with positive price feedback prompted a revaluation of these stocks today.”

According to Jefferies, cement prices were stable in November, with earlier declines bottoming out. The industry is now targeting price hikes of Rs 10-15 per bag in December.

The brokerage highlighted moderate demand growth in October and November, with recovery expected to strengthen in the fourth quarter, supported by a revival in government infrastructure spending.
Analysts are optimistic about a stronger recovery in the latter half of FY25, driven by anticipated increases in government investments in infrastructure projects.
(ET)

Continue Reading

Concrete

Steel Ministry Proposes 25% Safeguard Duty on Steel Imports

The duty aims to counter the impact of rising low-cost steel imports.

Published

on

By

Shares

The Ministry of Steel has proposed a 25% safeguard duty on certain steel imports to address concerns raised by domestic producers. The proposal emerged during a meeting between Union Steel Minister H.D. Kumaraswamy and Commerce and Industry Minister Piyush Goyal in New Delhi, attended by senior officials and executives from leading steel companies like SAIL, Tata Steel, JSW Steel, and AMNS India.

Following the meeting, Goyal highlighted on X the importance of steel and metallurgical coke industries in India’s development, emphasising discussions on boosting production, improving quality, and enhancing global competitiveness. Kumaraswamy echoed the sentiment, pledging collaboration between ministries to create a business-friendly environment for domestic steelmakers.

The safeguard duty proposal aims to counter the impact of rising low-cost steel imports, particularly from free trade agreement (FTA) nations. Steel Secretary Sandeep Poundrik noted that 62% of steel imports currently enter at zero duty under FTAs, with imports rising to 5.51 million tonnes (MT) during April-September 2024-25, compared to 3.66 MT in the same period last year. Imports from China surged significantly, reaching 1.85 MT, up from 1.02 MT a year ago.

Industry experts, including think tank GTRI, have raised concerns about FTAs, highlighting cases where foreign producers partner with Indian firms to re-import steel at concessional rates. GTRI founder Ajay Srivastava also pointed to challenges like port delays and regulatory hurdles, which strain over 10,000 steel user units in India.

The government’s proposal reflects its commitment to supporting the domestic steel industry while addressing trade imbalances and promoting a self-reliant manufacturing sector.

(ET)

Continue Reading

Concrete

India Imposes Anti-Dumping Duty on Solar Panel Aluminium Frames

Move boosts domestic aluminium industry, curbs low-cost imports

Published

on

By

Shares

The Indian government has introduced anti-dumping duties on anodized aluminium frames for solar panels and modules imported from China, a move hailed by the Aluminium Association of India (AAI) as a significant step toward fostering a self-reliant aluminium sector.

The duties, effective for five years, aim to counter the influx of low-cost imports that have hindered domestic manufacturing. According to the Ministry of Finance, Chinese dumping has limited India’s ability to develop local production capabilities.

Ahead of Budget 2025, the aluminium industry has urged the government to introduce stronger trade protections. Key demands include raising import duties on primary and downstream aluminium products from 7.5% to 10% and imposing a uniform 7.5% duty on aluminium scrap to curb the influx of low-quality imports.

India’s heavy reliance on aluminium imports, which now account for 54% of the country’s demand, has resulted in an annual foreign exchange outflow of Rupees 562.91 billion. Scrap imports, doubling over the last decade, have surged to 1,825 KT in FY25, primarily sourced from China, the Middle East, the US, and the UK.

The AAI noted that while advanced economies like the US and China impose strict tariffs and restrictions to protect their aluminium industries, India has become the largest importer of aluminium scrap globally. This trend undermines local producers, who are urging robust measures to enhance the domestic aluminium ecosystem.

With India’s aluminium demand projected to reach 10 million tonnes by 2030, industry leaders emphasize the need for stronger policies to support local production and drive investments in capacity expansion. The anti-dumping duties on solar panel components, they say, are a vital first step in building a sustainable and competitive aluminium sector.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds