Connect with us

Concrete

Optimisation of Concrete Cost for Metro Projects

Published

on

Shares

An attempt is made to develop a systematic approach for estimating the quantity of concrete and optimisation of concrete cost based on a case study. The article will be published in two parts. The present article (Part 1) discusses about the Metro Projects in brief, construction methodology adopted, estimation of concrete quantity and associated cost. The next article (Part 2) will be discussing about the methodologies used for optimising the cost associated with production, transportation and placement of concrete.

In India, for infrastructure projects, the concrete is used as one of the essential construction materials. Appropriate selection of concrete (type/grade) and precise estimation of concrete quantity are essential to achieve optimised cost of concrete. Further, optimisation of construction cost related to concrete could also be achieved by appropriate selection of construction methodology along with equipment selection (rental/purchase/outsourcing) suitable for site conditions. various equipment are required for the production, transportation and placing of concrete. The selection and usage of these equipment are crucial for the successful completion of project work. Generally, the selected equipment shall fulfill project requirements within the timeframe.

In this regard, comprehensive analysis on selection of equipment and their usage in construction site needs to be carried out by the contractor well in advance (i.e bidding stage). If equipment planned to use in construction site is inadequate, it will be difficult to follow the schedule of fast track infrastructure project. On the other hand, to reduce the time period of construction, the plan for excess usage of equipment, may not be financially beneficial for the project. Hence, there is need to develop a systematic method for for optimising the cost of concreting by accurate estimation of concrete quantity and effective decision on selection of appropriate construction systems. The method was developed based on a case study (construction of metro project in Mumbai).

Mumbai Metro project
The master plan for metro project in Mumbai includes nine corridors covering a length of 172 km, out of which 32.50 km is proposed underground and the rest is elevated. First 11.40 km long elevated metro corridor between Versova – Andheri – Ghatkopar (Line 1) is commissioned in June 2014. Elevated corridors between Andheri (East) to Dahisar (East) – 16.475 km (Line 7), Dahisar to DN Nagar – 18.589 km (Line 2A) and underground metro between Colaba – Bandra – SEEPZ is under construction. Construction of elevated corridor between DN Nagar to Mandale (Line 2B) is about to start. After implementation of the Mumbai metro master plan, 70 lakh commuters are expected to get benefit, in turn, will reduce the traffic on roads and congestion in suburban rails.
1.1. The metro line 2A is selected as a case study for the present article. Brief scope of elevated metro project is as follows:

  • Viaduct: Design and construction of around 18 km elevated viaduct including viaduct and ramp for depot entry.
  • Stations: Design of 16 elevated stations (excluding architectural finishing and pre-engineered steel roof
  • structure).

  • Construction methodology: Construction methodology of a metro project is explained in this section. Civil construction activities includes mainly two pases, i.e., construction along the alignment and construction of precast elements at casting yard.
  • Construction along the alignment (route of metro line): Key construction activities along the alignment are as follows:
  • Barricading is provided to enclose the construction area to ensure safety and coordinated movement of vehicular and pedestrian traffic (Fig. 1).
  • Pile locations are accurately marked on ground by using the total station. Pilot trenches are made to check for any infringing underground utilities. If utilities are found, they are shifted for hassle free construction. To initiate the piling work, hydraulic rotary piling rig is positioned at piling location for boring of the pile (Fig. 2). While boring, temporary casing is provided up to required depth depending on the ground strata. After completion of boring, reinforcement cage is lowered. For casting of pile, the tremie pipe is lowered and concrete is poured up to required level through the tremie pipe.
  • After completion of group of piles for one pier, excavation of the pile cap is taken up. After laying PCC, the reinforcement cage is tied and concreting of pile cap is done.
  • After tying reinforcement for pier, the starter is cast. After casting the starter, balance formwork is erected for casting pier. Concrete will be placed up to bottom of pier cap using the truck mounted boom placer (Fig. 3 and Fig. 4). At the end, anti-crash barrier is cast.
  • Precast pier cap from casting yard is transported to the site and erected on pier by using the crane (Fig. 5 and Fig. 6).
  • "Stitch concrete" (Fig. 7) of pier cap (junction of pier reinforcement and pier cap reinforcement) is done by using the crane and bucket.
  • First stage stressing of pier cap is done. Bearing pedestals are cast using crane and bucket. For curing of bearing pedestals, curing compound can be used.
  • Precast "U" girder from the casting yard is transported to the site using multi-axle hydraulic trailer. The girder is placed on bearing pedestal using high capacity cranes (Fig. 8).
  • After erection of girders in the adjoining spans, second stage stressing of pier cap is done.
  • Construction of station building by combination of precast and cast in-situ concrete is done at each station location (Fig. 9).
    Casting yard: Casting yard is mainly utilised for casting of the precast elements (pier caps, "U" girder, "I" girders, etc.), which are transported to the desired location along alignment for erection. Key construction activities at the casting yard are as follows:
  • Development of infrastructure at casting yard is very important activity. This includes the RMC plant installation, stacking of materials for RMC plant, construction of casting beds for precast piers, "U: girders and "I" girders, arrangement for stressing activity at each casting bed, stacking beds for casted precast elements and shed / gantry for handling formwork and casted precast elements (Fig. 10 and Fig. 11).
  • For casting of "U" girders, first cleaned bottom and outside shutters are placed in positioned and aligned properly. Thereafter, the reinforcement cage is placed in position. Inside shutters are placed after placing reinforcement and high tensile steel wires. Stressing of strands is done before casting "U" girders (Fig. 12 and Fig. 13).
  • Concreting of girder is done by using the placer boom. After achieving desired concrete strength, girders are shifted on the stacking beds (Fig. 14).
  • Casting of precast pier cap is done at the casting beds of pier cap. Truck mounted boom placer is used for placing concrete. After achieving desired concrete strength, piercaps are shifted on stacking beds (Fig. 15 and Fig. 16).
    Estimation of concrete quantity
    Based on the project, the required concrete quantity for viaduct and station needs to be calculated.. The estimated concrete quantity forms the base for calculating the cost of concrete and associated optimisation. Total concrete quantity at a glance for the selected project.
  • The cost associated with the concrete production and placement shall be estimated based on the following categories. Materials cost – depends on various grades of the concrete and the required quantity in each grade.
  • Plant and machineries cost – depends on the duration of project and the total concrete quantity required.
  • Transportation cost – depends on the location wise concrete requirement (at casting yard and/or along alignment).
  • Placement of concrete cost – Based on the site requirement, the concrete placement method (pumping/placer boom/bucket) needs to be planned for various concrete structures.

    Details about planning and costing of above points are explained in subsequent points.

    Costing of concrete

  • Concrete using fly ash/ground granulated blast furnace slag (GGBS) along with 53 Grade Ordinary Portland Cement (OPC) has been considered in calculation of cost.
  • Following are the possible technical advantages of using fly ash/GGBS along with OPC :
  • Diameter of viaduct pier is 1.8 m. In case of usage of only OPC, the core temperature of concrete may be higher and there are chances of thermal gradient leading to cracks within mass of concrete piers. Usage of fly ash will reduce the heat evolution during hydration, leading to reduced core temperature.
  • If high grade concrete is produced using only OPC, cement content in concrete increases. This may lead to shrinkage of concrete. Use of fly ash may minimise the shrinkage cracks.
  • In case of use of fly ash/GGBS, there will be secondary hydration which will make concrete more impermeable and greatly improve the durability of concrete structure.
  • Cohesive concrete can be achieved. Further, surface finish of the concrete structure can be improved.
  • For piles and pile caps, concrete can be produced using 53 grade OPC and GGBS.
  • For mass concrete, up to 70 per cent GGBS of total cementitious materials can also be used. This will be helpful in reducing core temperature of concrete. However, the limits on the percentage replacement shall be specified in the case of pumping.
  • Average material cost (as received from ready-mix concrete suppliers in Mumbai) for different grades of concrete required in metro construction using OPC and fly ash is given in Table 1. The fly ash is used up to 30 per cent (by mass) in concrete and the percentage replacement varies depending on the grades of concrete.
  • In case of GGBS usage, there will be further reduction of material cost in the range of Rs 200 to 400 per m3, depending on the grade of concrete and percentage of GGBS used.
    Summary
    The present article discussed about the metro projects in brief along with construction methodology of an elevated viaduct. Further, the article discussed about the method of estimation of concrete quantity and associated costs for various grades of concrete.
    Acknowledgment
  • Mumbai metro rail projects
  • Schwing Stetter (India) for information on equipment required for RMC plant
  • AIMIL Ltd. for providing information on laboratory equipment
  • RMC suppliers in Mumbai for providing rates of RMC and raw materials
    Authors

    Mahesh Tendulkar
    M.Tech Student
    Construction Technology and Management
    Department of Civil Engineering
    Indian Institute of Technology Bombay
    Powai, Mumbai – 400 076.
    tendulkar_mahesh@yahoo.com
    Basavaraj M B
    Chief Engineer (Civil) – Metro
    Mumbai Metropolitan Region Development Authority
    Old Administrative Building, 6th Floor
    Bandra – Kurla Complex, Bandra (East)
    Mumbai – 400 051.
    basavaraj.mb@mailmmrda.maharashtra.gov.in
    Prakash Nanthagopalan
    Assistant Professor
    Construction Technology and Management
    Department of Civil Engineering
    Indian Institute of Technology Bombay
    Powai, Mumbai – 400 076.
    prakashn@civil.iitb.ac.in

    Table 1 :Material cost for various grades of concrete

    Concrete Material
    cost/m3 (in Rs)
    M15 3,800
    M35 4,550
    M40 4,650
    M45 5,200
    M55 5,600
  • Continue Reading
    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Concrete

    Adani’s Strategic Emergence in India’s Cement Landscape

    Published

    on

    By

    Shares

    Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

    India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
    In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

    Building Adani Cement brand
    Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
    Integration roadmap and key milestones:

    • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
    • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
    • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
    • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
    • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
    • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
    • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
    • Orient Cement: It would serve as a principal manufacturing facility following the merger.

    Scale, capacity expansion and market position
    In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
    The organisation is pursuing aggressive brownfield expansion:

    • By FY 2026: Reach 118 MTPA
    • By FY 2028: Target 140 MTPA

    These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
    As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

    Strategic advantages and competitive benefits
    The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

    Market coverage and brand consistency
    Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
    By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

    Strategic implications and risks
    Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

    Challenges potentially include:

    • Integration challenges across systems, corporate cultures, and plant operations
    • Regulatory sanctions for pending mergers and new capacity additions
    • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

    When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

    Conclusion
    Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

    About the author:
    Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

    Continue Reading

    Concrete

    Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

    Published

    on

    By

    Shares

    PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

    Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
    Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
    Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
    Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
    Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
    Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

    Continue Reading

    Concrete

    Driving Measurable Gains

    Published

    on

    By

    Shares

    Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

    Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
    ISO 50015 standards.

    Beyond energy efficiency, the retrofit significantly improved operational parameters:

    • Lower thermal stress on equipment
    • Extended lubricant drain intervals
    • Reduction in CO2 emissions and operational costs

    These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

    Verified sustainability, zero compromise
    This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

    • Enhanced component protection
    • Extended oil life under high loads
    • Stable performance across fluctuating temperatures

    By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

    Klüber wins EcoVadis Gold again
    Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
    of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
    Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

    A trusted industrial ally
    Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

    Continue Reading

    Trending News