Economy & Market
Cement Makers Bullish on FY2019
Published
7 years agoon
By
admin
Cement is never used as cement alone but is always converted to a value-added product in practice. Therefore application of cement becomes extremely important. The cement producers have a dedicated department that looks into the applications of product. Now onwards, we shall try and cover it through a series of articles in a structured way.
India is the second largest cement producer globally and is a vital part of the economic development, providing employment opportunities to more than a million people, directly or indirectly. Since its deregulation in 1982, the Indian cement industry has grown at a tremendous pace attracting huge investments – both from domestic as well as foreign investors. The industry has added over 110 MT of capacity in the last five years.
However, the financial year 2017-18 has been a relatively tough one for the industry due to ban on sand mining, use of pet coke and diminished market concentration of industry leaders. Slower progress in infrastructure projects and low offtake from housing and industrial users also slowed down the growth. A number of foreign players are also eyeing India’s cement sector, owing to high margins and steady demand.Industry structure
The Indian cement industry is dominated by a few companies. The top 20 cement companies account for almost 70 per cent of the total cement production of the country. A total of 210 large cement plants account for a cumulative installed capacity of over 350 MT, with 350 small plants accounting for the rest. Of these 210 large cement plants, 77 are located in the States of Andhra Pradesh, Rajasthan and Tamil Nadu.
Due to increased construction and infrastructural activities, which has led to growth in demand, cement industry has seen major consolidation and large investments in recent years. During the year, UltraTech Cement acquired Jaypee Cement while Orient Cement took over two entities – Bhilai Jaypee Cement and Nigrie Cement grinding unit. An improvement in utilisation rates of the newly-acquired capacities and fresh capacity additions by these players has led to higher volumes.The construction market
India’s construction value of output stands over at Rs 26,500 billion and has been slowly expanding over the years. With value addition close to Rs 10,000 billion, its share in total GDP rose from 5.6 per cent in 1990-91 to over 7.3 per cent in 2017-18. However, the growth of construction activity has slowed down significantly in recent years but picked in 2017-18. The last highest yearly growth of 10.8 per cent was recorded in 2011-12, but thereafter it has not even touched 5 per cent until now. In 2016-17, it is estimated to have increased 1.3 per cent and rebounded to 4.3 per cent in 2017-18. Going ahead, it appears that the growth will remain under 4 per cent, thus will result in slower increase in demand for construction materials including cement. However, the growth will largely depend on the government’s initiative in developing the infrastructure and the process of boosting the housing sector.
In construction, cement is the second largest component, although its value accounts for only 12.5 per cent of total input cost of construction, whereas steel takes away nearly half the cost of inputs. Over Rs 2,100 billion worth of cement is consumed to construct a variety of structures over the past three years. Under this premise, dwelling construction accounts for 27.5 per cent of all construction activity, while another 40 per cent is accounted for non-residential buildings construction. Roads and bridges, which is the major infrastructure component, accounts for just 6.4 per cent of construction. The remaining is other structures and land improvement activity. Thus, housing and commercial construction is the major economic activity and is largely dependent on cement and steel. According to estimates, housing sector accounts for about 67 per cent of the total cement consumption while infrastructure makes up for 13 per cent of the consumption in India.Cement industry performance in 2017-18
Cement production volume in 2017-18 grew 6.3 per cent year-on-year after a decline of 1.2 per cent in 2016-17, for the first time in 15 years as demonetisation reduced demand. The industry with an estimated capacity of about 465 million ton (as of December 2017), saw production grow 3.8 per cent per annum during the period 2012-13 to 2017-18. With no authentic data available on cement consumption or demand, it is assumed in this report, that production will be a proxy to consumption since ending stocks are negligible.
The cement industry witnessed a revival during 2017-18, backed by government spending on infrastructure. Construction of houses under the ‘Housing for All’ scheme and Pradhan Mantri Awas Yojana (PMAY) have been major drivers of demand from the housing segment especially in the rural areas. Infrastructure projects under Bharatmala, Sagarmala and smart cities continued to drive demand from infrastructure segment.
The real estate sector witnessed disruption in the construction and sales activity beginning demonetisation exercise in November 2016. The disruption continued with builders taking a cautious approach to RERA implementation, temporarily halting new sales or construction. Implementation of RERA in May 2017 impacted the demand for cement from real estate segment in first and second quarters of 2017-18.
Cement prices remained range bound in the past four years. They are mainly driven by regional capacity, utilisation levels and demand within the region. The price variation across regions contract when there is steady demand from both retail and institutional cement consumers. Western and eastern regions with favourable demand continue to record higher price for cement.Prospect for 2018-19
Cement demand has a very close linkage with economic growth and government spending. Demand for housing is driven by income growth while infrastructure development largely depends on government expenditure, both state and central. In recent past, demand for cement has remained poor as the economic growth slowed down to less than 7 per cent between 2012-13 and 2016-17 from an average of 9 per cent between 2005-06 and 2010-11 when cement demand had expanded by 8.5 per cent per annum. Considering that economy will grow between 7 to 8.25 per cent in the next five years, the statistical relation between cement demand and economic growth, predicts that cement demand will grow at the rate of 3.6 per cent per annum during the period 2018-23. In 2018-19, demand is expected to rise 3.8 per cent assuming GDP grows 7 per cent and overall construction activity expand 5.2 per cent during the year.
However, large cement companies are bullish on economic growth in 2018-19 and well as on the cement industry. This was largely evident from the developments in the last quarter of 2017-18 and early 2018-19. After a prolonged lull in demand, volume growth picked up pace, buoyed by government spending on infrastructure projects; but prices are far from their historic levels. Cement prices took a hard knock in the seasonally strong March quarter of 2017-18.
Care Ratings observes that demand for cement from housing and real estate sectors is expected to grow by around 7 per cent, and from infrastructure by 8 to 10 per cent. The demand from affordable housing is expected to sustain on the back of the government allocating Rs 6,500 crore for urban housing. Completion of the same would lead to an incremental demand of 1 to 1.5 per cent (3 to 4.5 MT) for cement in 2018-19. Additionally, the monsoon forecasts for the year indicate normal rainfall, which should lead to sustained demand from rural housing segment.
Similarly, infrastructure segment may continue to remain in focus during the year as far as demand for cement is concerned. Development of national highways is expected to contribute 2-3 MT of incremental demand for cement.
Demand from various projects at proposed smart cities and under-construction metro rail projects at various stages of development in 14 cities are some of the projects expected to drive demand for cement during the fiscal 2019. The development of the above-mentioned projects across the geography is expected to improve capacity utilisation of cement plants across the five regions. Election in some of the key states in southern, northern and central regions followed by the general election in 2019 would ensure faster implementation of sanctioned projects. The infrastructure segment is expected to grow by 8-10 per cent, the analysis added.Challenges
Increase in pet coke prices in the global markets and global crude oil price has been leading to increase in domestic diesel prices would impact operating margins of major players during 2018-19.
Availability of sand is a major challenge globally which affects construction activity. India has been facing acute shortage of sand across states especially in northern and southern region. Even though sand seems to be an abundant resource, the availability of sand required for construction is scarce in these regions. Sand is largely illegally mined across many of the states in southern and northern regions, and the respective state governments have been trying to curb the same, in order to boost their tax revenues. This has led to a sudden drop in sand availability for construction.
In 2018-19, capacity addition of around 8-10 MT is expected in eastern and western region. Central, northern and southern regions combined are expected to add about 10-15 MT of production capacity. Revocation of the sand mining ban and acceptance of manufactured sand, popularly known as M-sand in various region, is expected to aid construction activities. It is expected that in order to meet rising demand, cement companies will add 56 million ton capacity over the next three years.
With two major states (Rajasthan and Madhya Pradesh) going into assembly elections followed by general elections in first and second quarters of 2019, the demand from infrastructure and construction is expected to peak in central, eastern and western region. Utilisation in cement capacity across regions is expected to improve during the year to around 67 per cent from 65 per cent in 2017-18.What large companies expect this year to be
ACC expects GDP growth, primarily fueled by consumption, to touch a respectable mark of 7.5 per cent in 2018-19, up from 6.5 per cent in the previous year. Budget initiatives are expected to raise the rural demand and bolster economic growth with initiatives such as Minimum Support Price (MSP) for farmers set at 1.5 times the cost of production, export impetus on agri-produce, increased allocation of Rs 14.4 lakh crore for rural housing and infrastructure and a 26 per cent increase in funding to the Pradhan Mantri Krishi Sinchayee Yojna (PMKSY). Additionally, private consumption expenditure is expected to increase with the implementation of the Seventh Pay Commission hike at the State level.
Demand for cement in 2018-19 is expected to increase from 6-7 per cent with continued government’s focus on rural development, affordable housing, smart cities, as well as infrastructure by laying thrust on construction of cement concrete roads, highways through its "Bharatmala Project", one of the biggest highway construction project. This also includes economic corridors’ development, coastal and port connectivity roads, border and international connectivity roads, expressway etc.
However, the cement industry is grappling with sub-optimal effective capacity utilisation of 70 per cent, with capacity overhang of more than 100 million ton. While cement plants in the northern, central and eastern regions of the country produced at levels above 85-90 per cent of capacity, excess capacity in the southern region has inhibited the industry’s average capacity utilisation. Intense competition and not enough demand pull, will continue to lead to excess capacity in 2018-19. However, this situation is expected to correct itself in 2019 with the increased outlays on housing, infrastructure development and agri-sector initiatives.
The five-fold increase in the outlay on Pradhan Mantri Awas Yojana – Urban (PMAY-U) to Rs31,500 crore, is expected to revive urban housing demand, while generating a 30 per cent share of the overall demand for cement. Infrastructure development outlay for highways, roads and railways has increased by 11 per cent and 22 per cent respectively. This will boost demand for cement from the infrastructure sector, which is estimated to account for 20 per cent of cement demand. A social welfare surcharge of 10 per cent, will replace the existing 3 per cent education cess on customs duty, which will marginally inflate the cost of imported inputs such as petcoke and non-coking coal products.
According to Gujarat Ambuja Cement, 2018-19 will be a year of growth, which has been rightly endorsed by the World Bank. According to the World Bank, when compared to other emerging economies, India has an "enormous growth potential" with the implementation of comprehensive reforms. Key indicators across the economy have shown positive rebounds and there is hope that the upward trajectory will continue in the new fiscal year to help achieve a GDP of +8 per cent for the years to come.
However, it also pointed towards major challenges that can impede cement growth. The industry is dependent on natural resources and is highly energy intensive. Natural resources like limestone, coal and minerals are essential to produce cement. The industry needs to ensure the uninterrupted supply of these materials at an optimum cost and quality, however due to the depletion of reserves, this is becoming challenging. Volatility in the price of coal is also an area of concern for the industry. The quality of raw material additive and mineral gypsum is also depleting.
Nevertheless, with an improvement in the economic scenario, immense potential is being offered to the cement industry by the infrastructural, commercial and housing sectors.
UltraTech Cement is bullish on the growth prospects for the cement industry as the government goes big on roads and metro spendings. Reportedly it said that cement demand in the country could well grow by about 8 per cent in 2018-19, led by government spending on infrastructure. With bulk of demand is being generated from infrastructure spending, roads and metro are driving this growth.Sensitive issues
The government plans banning burning petroleum coke as a fuel nationwide to comply with a Supreme Court request as part of a long-running case to clean the country’s air. A refinery by-product, petroleum coke, or pet coke, is used as a fuel because of its higher energy content than coal, but it releases larger amounts of carbon dioxide and sulphur dioxide, which can cause lung disease and acid rain.
The ongoing consolidation in cement industry has changed the supply dynamics. Competitive intensity remains high as some regional firms are venturing into newer markets and some of them are on a capacity addition spree. So cement makers will be chasing demand growth at the expense of prices. And the trend of depressed prices may not reverse in near term.– NITIN MADKAIKAR
You may like

An invigorating discussion amongst industry experts, on digital transformation, sustainability and cybersecurity, threw interesting insights.
The cement industry is at a crucial juncture, with digital transformation, sustainability, and automation shaping its future. The panel discussion explored key points on digitalisation, sustainability and automation, emphasising the importance of a multidisciplinary approach to modern cement manufacturing.
The webinar was moderated by Dr SB Hegde, Professor, Jain College of Engineering & Technology, Hubli; and Visiting Professor, Pennsylvania State University, USA.
Speakers included:
- Dr Hemantkumar Aiyer, VP & Head R&D, Nuvoco Vistas Corp
- Dr Raju Goyal, Executive President, Chief Technical and Sustainability Officer,
UltraTech Cement
- Dr Rizwan Sabjan, Head – Global Sales and Proposals, Process Control and Optimisation, FLSmidth Cement
- Prosenjit Dutta, Director Operations, PS Digitech-HR India
- Raghu Vokuda, Chief Digital Officer,
JSW Cement
- Sachin Vaidya, Regional GM – Digital, Process Industries, ABB
Role of digital transformation
Dr Hegde emphasised the need for integrating emerging technologies with a multidisciplinary approach to enhance cement plant efficiency. He highlighted that “understanding of systems and how to integrate them” is essential for maximising the benefits of digital tools.
Sabjan echoed this sentiment, stressing that cement plants need to embrace a cultural and mindset shift to fully leverage digital technologies. He pointed out, “Software can do wonders for the plant, but only if the workforce understands and implements it effectively.” He warned against isolated implementations, advocating for a holistic approach where departments like OT, quality control and automation work together.
Sustainability: The road ahead
With sustainability becoming a global priority, cement manufacturers must adapt to new environmental regulations and carbon reduction goals. Dr Hegde posed a critical question: “How is the cement industry moving towards sustainability, and how can plants prepare for these changes?”
Sabjan responded by highlighting the importance of long-term planning and commitment. “Often, discussions happen, but after two months, we forget about them and restart from scratch. This approach will not work. We need a structured, goal-oriented plan with defined KPIs,” he said. Sabjan emphasised the need for a systematic approach, focusing on tangible metrics such as energy savings. “If a plant aims to improve energy efficiency by five percent, it must set this as a goal and track progress,” he suggested.
The discussion also underscored the need for strong leadership to drive digital adoption. “A motivated team and a dynamic leader can make all the difference,” Dr Hegde noted.
Enhancing durability with digital tools
Strength and durability remain critical concerns in cement production. Goyal explained, “Machine learning-based lab technologies enable predictive analysis, allowing manufacturers to forecast 28-day, 7-day, and 1-day strengths before the material leaves the mill.” He also emphasised the importance of soft sensors, which “help predict strength and optimise mix design before production.”
He elaborated on the role of XRF/XRD analysis: “These tools provide elemental and mineralogical insights, allowing for quick adjustments to raw materials and ensuring consistent quality.” Furthermore, digital twins are revolutionising cement quality optimisation. “They allow us to simulate and test mix designs before implementation, reducing errors and optimising durability.”
Cybersecurity risks in IT-OT integration
As cement plants become increasingly digitalised, cybersecurity threats pose significant risks. Vaidya expressed concern that many manufacturers underestimate cybersecurity risks. “As a technology provider, I often struggle to convince cement manufacturers of the importance of cybersecurity. Some benefits are intangible but essential for plant security.”
He outlined major threats, including malware attacks, unauthorised network access, and operational disruptions. “Preventive measures include secure data transactions, network monitoring, and regular cybersecurity training for staff to minimise insider threats,” he said.
He urged cement companies to take cybersecurity seriously: “As digital transformation advances, cybersecurity is not an option—it is a necessity. Without proper security protocols, cement plants risk cyberattacks that could halt production.”
Dr Hegde agreed, adding, “People often ignore cybersecurity until they experience financial loss. Awareness must be proactive, not reactive.”
Dutta stated, “Advanced process control (APC) is a game-changer for cement manufacturing, allowing us to stabilise operations, optimise fuel efficiency, and reduce energy consumption through real-time data insights.”
He emphasised the transformative impact of real-time data analytics and advanced process control (APC) in cement manufacturing. He highlighted that APC enables manufacturers to optimise raw mix design, fuel efficiency and kiln operations through data-driven decision-making. By continuously monitoring critical parameters, APC minimises process variations, improves stability, and reduces energy consumption, leading to cost savings and enhanced productivity. Additionally, he stressed the role of predictive maintenance in preventing equipment failures, extending machinery lifespan and minimising downtime, ultimately ensuring consistent quality and operational efficiency in cement production.
Will Indian plants become fully autonomous?
With AI, robotics and digital twins transforming global cement production, the question arises: Can Indian cement plants become fully autonomous within the next 5–10 years?
Vokuda was skeptical about complete automation in the near future. “Indian cement plants will see significant automation, but full autonomy remains unlikely within a decade. A hybrid model, combining AI-powered decision-making with human oversight, is more practical.”
He highlighted key challenges: “Unlike developed nations, India’s low labour costs may make full automation less attractive. Additionally, digital twin technology in India is still in its early stages, focusing more on process twins than asset twins.”
Another challenge is data management. “AI-ML models require vast amounts of data, which necessitates ultra-low latency networks like 5G and edge computing. We are not yet at that level of technological maturity,” he explained.
Despite these hurdles, he remains optimistic: “While full automation may take longer, the industry will continue to evolve with advancements in digital twins, real-time analytics, and AI-driven insights.”
Conclusion
Experts agree that while technology holds immense potential, its successful implementation depends on cultural shifts, strong leadership, and structured execution.
Key takeaways from the discussion include:
- Integration of digital tools: Multidisciplinary collaboration is essential for successful implementation.
- Sustainability goals: Defined KPIs and a long-term approach are crucial.
- Quality optimisation: Machine learning, real-time analysis, and digital twins are improving cement strength and durability.
- Cybersecurity: As digital transformation progresses, cement plants must prioritise cybersecurity.
- Automation: While full autonomy is unlikely soon, AI and digital tools will play a growing role in decision-making.
As the industry moves forward, cement manufacturers must embrace technological advancements while ensuring resilience against cybersecurity threats and operational challenges. With the right strategies, India’s cement sector can achieve greater efficiency, sustainability, and innovation in the years to come.
ICR’s virtual panel discussion was supported by FLSmidth Cement as the Presenting Partner and ABB as the Gold Partner.
Concrete
The Science and Application of Grinding Aids
Published
6 hours agoon
March 11, 2025By
admin
Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality in the concluding part of his article.
Grinding aids represent a critical segment of the cement additives market, driven by their ability to enhance grinding efficiency, reduce energy consumption, and improve cement quality. The market dynamics of grinding aids vary significantly across regions, influenced by economic growth, cement production capacities and regulatory environments.
Global market size and growth projections
The global grinding aids market was valued at approximately US $ 1.2 billion in 2023 and is expected to grow at a CAGR of 5.5 per cent from 2023 to 2030, reaching nearly US $ 1.8 billion by 2030.
This growth is fueled by the increasing focus on energy efficiency and sustainable cement production practices worldwide.
Rapid urbanisation and infrastructure development, especially in emerging economies, are major growth drivers. Cement producers are increasingly adopting grinding aids to address rising energy costs, reduce carbon footprints, and improve production efficiencies. For instance, grinding aids have been shown to lower energy consumption by up to 25 per cent, making them a cost-effective solution for plants facing energy price volatility.
Regional trends: Developed vs. developing markets
- Developed markets: Europe and North America represent mature markets for grinding aids. Europe, driven by stringent environmental regulations such as the EU Emissions Trading System (EU ETS), has witnessed a steady rise in the adoption of low-VOC and eco-friendly grinding aids. Leading players in these markets emphasise sustainability and compliance with regulatory frameworks, contributing to steady demand.
In North America, the focus is on productivity enhancements in large-scale cement plants, with grinding aids used to achieve finer cement grades and support blended cement production. - Developing markets: Emerging economies in Asia-Pacific, the Middle East, and Africa exhibit the fastest growth in grinding aid adoption. The Asia-Pacific region accounted for over 40 per cent of global grinding aid consumption in 2023, with countries like India, China, and Vietnam leading the way. The rapid urbanisation, rising construction activity, and increasing cement production capacities in these regions are
driving demand.
In Africa, grinding aids are gaining traction as manufacturers focus on optimising production costs in an environment of fluctuating raw material and energy prices.
Market size and adoption rate in India
India, the world’s second-largest cement producer, offers a significant growth opportunity for grinding aids. In 2023, the grinding aids market in India was valued at US$ 150 million, with a projected growth rate of over seven per cent CAGR through 2030. The adoption rate remains relatively low at smaller plants, which prioritise cost-saving over efficiency gains. However, leading manufacturers and integrated cement plants are increasingly embracing grinding aids, particularly for blended cement production.
Blended cements, such as Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC), account for more than 70 per cent of the Indian cement market. Grinding aids tailored for fly ash and slag-blended cements are in high demand, with some products delivering up to a 15 per cent increase in mill throughput and improved early strength development.
Emerging trends
- Eco-friendly formulations: The growing demand for sustainable grinding aids has prompted companies to develop low-VOC and biodegradable alternatives.
- Customised solutions: Grinding aid formulations are increasingly tailored to address specific raw material challenges and production processes, such as VRMs or high-SCM cement blends.
- Digitalisation: Smart dosing systems integrated with real-time mill monitoring are enabling optimised grinding aid usage, ensuring consistent performance across diverse production conditions.
Bridging the Trust Gap
For cement plant operators, the quality and performance of grinding aids often appear as a ‘black box.’ The lack of transparency in the formulation and quality checks of these additives has historically limited trust and widespread adoption. Grinding aid manufacturers must address this issue by fostering transparency and providing detailed insights into the testing and validation of their products. This would not only instill confidence but also strengthen collaboration with cement companies.
Grinding aid producers should provide robust documentation outlining the physical and chemical characteristics of their formulations, supported by consistent performance data from laboratory tests, industrial-scale trials, and third-party validations. This transparency is essential to demystify grinding aids’ performance and demonstrate their effectiveness across diverse operational conditions.
Emerging innovations in grinding aid chemistry
The path forward for grinding aid manufacturers lies in innovation. Recent research highlights the potential of hybrid formulations combining traditional amines and glycols with advanced polymeric additives like polycarboxylate ethers (PCEs). These hybrid products can address specific challenges such as improving grindability in blended cements containing fly ash or slag, where traditional additives often underperform. Nano-engineering of grinding aids, incorporating nanoparticles for optimised dispersion and enhanced hydration kinetics, represents another promising avenue.
Leveraging AI for optimisation
The integration of artificial intelligence (AI) and machine learning tools into grinding aid application systems is reshaping the cement industry. AI-driven systems enable real-time optimisation of grinding aid dosages by analysing mill performance data, such as power consumption, throughput, and particle size distribution. For example, a cement plant in Europe reported a 15 per cent reduction in specific energy consumption and a 10 per cent
increase in mill throughput using AI-optimised dosing systems. This innovation reduces operational variability and improves the predictability of grinding aid performance.
Expectations from grinding aid producers
The cement industry demands more than just products; it seeks partnerships with grinding aid manufacturers. Key expectations include:
1. Customised formulations: Tailored products designed for specific raw materials, clinker compositions, and mill configurations to maximise efficiency and performance.
2. Eco-friendly additives: Grinding aids with low volatile organic compound (VOC) emissions and biodegradable ingredients that align with the industry’s sustainability goals.
3. Comprehensive technical support: On-site training and technical services to help plant operators understand grinding aid chemistry, application techniques and performance optimisation strategies.
4. Advanced quality control systems: Transparent testing protocols, including real-time quality assurance of grinding aids delivered to cement plants. Regular reporting of performance consistency through defined KPIs like grindability index and Blaine fineness is essential.
Role of cement companies in promoting grinding aid usage
Cement producers must take an active role in promoting grinding aid adoption. Sharing success stories of energy savings, improved mill performance, and enhanced cement quality can encourage industry-wide adoption. For example, an Indian cement manufacturer recently documented a 20 per cent improvement in 28-day compressive strength and a 10 per cent reduction in energy consumption with glycol-based additives, driving interest among peers.
Moreover, collaborative initiatives between cement producers and grinding aid manufacturers, such as joint research programs and knowledge-sharing forums, could lead to significant advancements in grinding technology. Organisations like the Cement Manufacturers’ Association of India and the World Cement Association can facilitate these partnerships.
Conclusion
Grinding aids play a pivotal role in modern cement manufacturing, offering significant advantages in energy efficiency, mill productivity and cement quality. Despite their transformative potential, adoption remains inconsistent due to challenges like raw material variability, operational concerns and limited trust in product formulations. Transparency and collaboration between grinding aid producers and cement manufacturers are critical to addressing these issues and fostering broader acceptance.
Innovations in grinding aid chemistry, including hybrid formulations and nano-engineered additives, have unlocked new possibilities for enhancing grindability and hydration performance. Meanwhile, advancements in artificial intelligence and data analytics have opened avenues for real-time optimisation, ensuring precise dosing and measurable cost savings. These developments underscore the evolving synergy between technology and grinding aid applications.
Globally, the grinding aid market is poised for growth, with developed regions leading adoption and emerging economies like India offering immense potential driven by infrastructure demands. However, tapping into these opportunities requires grinding aid producers to align with industry expectations. Cement manufacturers expect customised solutions, eco-friendly formulations, technical support and transparent quality assurance processes to build trust and confidence.
The path forward demands a collaborative approach. Grinding aid producers must continue investing in research and innovation while actively engaging with the cement industry to educate stakeholders and demonstrate measurable benefits. Concurrently, the cement industry must champion adoption through case studies, knowledge sharing, and regulatory support. Together, these efforts will ensure grinding aids fulfill their promise of enabling a more efficient, sustainable, and resilient cement manufacturing sector.
References
1. Gao, J., Zhang, S., Wang, X., & Ma, B. (2011). “Effect of organic grinding aids on cement properties and the analysis via liquid chromatography-mass spectrometry.” Construction and Building Materials, 25(8), 3600–3605.
2. Amritphale, S. S., Patel, M., & Singh, R. (2017). “Grinding aids: A study on their mechanism of action in cement grinding processes.” Indian Cement Review.
3. Cembureau – The European Cement Association. “Cement grinding optimisation through grinding aids.” Industry Report, 2023.
4. Flatt, R. J., & Schober, I. (2012). “Superplasticisers and the rheology of concrete.” International Journal of Cement Chemistry, 64(4), 91–109.
5. Mejeoumov, G. G. (2007). “Improved cement quality and grinding efficiency by means of closed mill circuit modeling.” PhD Dissertation, Texas A&M University.
6. Global Cement. “Advances in grinding aids: Market trends and new technologies.” Published October 2024.
7. Statista. “Global grinding aids market size and forecast (2023-2030).” Published March 2024.
8. Pal, B. K., & Rath, P. C. (2020). “Influence of grinding aids on particle size distribution, strength, and hydration of cement.” Journal of Materials Science and Applications, 45(2), 234–246.
9. Indian Cement Review. “Emerging market scope of grinding aids in India.” Published July 2023.
10. Zhang, H., Li, X., & Zhao, Y. (2022). “The role of grinding aids in improving cement hydration kinetics.” Journal of Advanced Materials Science, 17(6), 527–540.
11. Sika AG. “Technical Report on Polycarboxylate Ether (PCE) based grinding aids.” Published 2022.
12. Cement and Concrete Research. “AI-driven optimisation in cement grinding: Case studies and industrial applications.” Volume 152, 2023.
13. Taylor, H. F. W. (1997). Cement Chemistry (2nd Edition). Thomas Telford Publishing.
14. Indian Bureau of Mines (IBM). “Market trends and challenges in cement manufacturing.” Annual Report, 2024.
15. World Cement Association. “Sustainability in grinding aids and cement additives.” Published 2024.
About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.

Efficient bulk material handling has always been critical for seamless production, cost reduction and environmental compliance. Kanika Mathur delves into advanced automation, smart sensors and sustainable transport solutions that are key to overcoming challenges.
The cement industry is a cornerstone of infrastructure development, contributing significantly to economic growth. However, cement production involves the handling and transportation of vast quantities of raw materials such as limestone, clay, iron ore, fly ash and gypsum, as well as the final product—cement itself. Efficient bulk material handling (BMH) systems are crucial in ensuring uninterrupted production, reducing operational costs, minimising material wastage and improving overall efficiency.
In an industry where material losses, dust emissions, and energy consumption are major concerns, advancements in bulk material handling technology are playing a vital role in optimising operations. Automated and energy-efficient bulk handling solutions, such as pneumatic conveying systems, belt conveyors and stacker-reclaimer systems, are transforming the way cement plants manage their raw materials and finished products. This article explores the key aspects of bulk material handling in the cement industry, the latest technological advancements, and the challenges and opportunities in this space.
Importance of bulk material handling
Cement manufacturing requires the continuous movement of raw materials from mines and quarries to processing plants, followed by the transportation of the finished product to storage facilities and distribution networks. Bulk material handling systems ensure that this process runs smoothly, reducing downtime and enhancing productivity.
According to the Global Cement Report (2023), inefficient material handling contributes to 5 – 10 per cent of total cement production losses in India. Additionally, poor handling practices lead to high levels of dust pollution, which is a significant environmental and health concern. With cement production in India expected to reach 500 million metric tonnes by 2025, the demand for advanced and automated material handling systems is increasing rapidly.
Jacob Jose, CEO and Managing Director, Methods India, says, “With our advanced pipe conveyors, downhill conveyors and cross-country conveyors, we have revolutionised the way cement plants transport raw materials. Our technology helps reduce operational costs, minimise environmental impact and improve energy efficiency. Over the years, we have observed a positive impact in the industry, particularly with the growing adoption of pipe conveyors and cross-country conveyors, which have proven to be more efficient and environmentally friendly alternatives to traditional transport methods.”
Key bulk material handling technologies
1. Belt conveyors: The workhorse of cement plants
Belt conveyors are one of the most widely used bulk material handling solutions in the cement industry. They transport raw materials, clinker and finished cement over long distances within the plant and to storage facilities. Modern high-capacity belt conveyors can handle loads exceeding 10,000 tonnes per hour, significantly improving efficiency.
- Advantages: High efficiency, low operational costs, and reduced manual intervention.
- Challenges: Belt wear and tear, spillage, and maintenance requirements.
- Technological advancement: The introduction of heat-resistant and fire-retardant conveyor belts has improved durability, while sensor-based predictive maintenance systems help detect belt failures before they occur.
2. Stacker and reclaimer systems: Optimising storage and retrieval
Stackers and reclaimers are essential for managing bulk raw materials in cement plants. Stackers pile materials such as limestone, coal, and gypsum, while reclaimers retrieve them for processing. These systems ensure homogeneous blending, reducing material variability and enhancing cement quality.
- Latest innovation: Automated stacker and reclaimer systems with AI-driven optimisation help maximise storage space and minimise
retrieval time. - Efficiency gains: Newer stacker-reclaimer designs allow for material recovery rates of over 90 per cent, reducing wastage and ensuring a steady feed to the production line.
3. Pneumatic conveying systems: Dust-free material transfer
Pneumatic conveying systems use air pressure or vacuum systems to move powdered and granular materials such as fly ash, cement and kiln dust through pipelines. They are particularly useful in reducing dust emissions and preventing material contamination.
- Advantages: Dust-free operation, reduced environmental impact, and minimal maintenance.
- Industry adoption: Many Indian cement plants are shifting from mechanical conveyors to high-pressure pneumatic conveying systems to comply with pollution control regulations set by the Central Pollution Control Board (CPCB).
4. Screw conveyors and bucket elevators: Compact and versatile solutions
- Screw conveyors: Used for short-distance material movement, particularly for handling fine and powdered materials such as cement, gypsum, and pulverised coal.
- Bucket elevators: Ideal for vertical material transport, commonly used for lifting raw meal, cement, and clinker to storage silos.
- Technological upgrades: The introduction of wear-resistant alloy buckets and variable-speed drives has enhanced the reliability and efficiency of these systems.
Challenges in bulk material handling
Despite significant advancements, several challenges continue to hinder bulk material handling efficiency in cement plants:
1. Material spillage and dust emissions
Material spillage and dust emissions pose environmental, health, and financial challenges. Uncontrolled dust emissions from conveyors, transfer points, and storage facilities not only violate regulatory norms but also lead to material losses. Studies show that up to three per cent of bulk materials are lost due to improper handling in Indian cement plants.
- Solution: Enclosed conveyors, dust suppression systems, and bag filters help reduce dust pollution.
2. High energy consumption
Bulk material handling systems consume a significant amount of energy, especially in large cement plants where materials need to be transported over long distances. According to a CII (Confederation of Indian Industry) report (2023), energy costs account for nearly 40 per cent of total production expenses in cement manufacturing.
- Solution: Energy-efficient conveyor motors, regenerative braking systems, and smart automation can help reduce power consumption.
3. Wear and tear of equipment
Continuous exposure to abrasive materials like limestone and clinker leads to significant wear and tear in bulk material handling equipment, increasing maintenance costs and downtime.
- Solution: The use of wear-resistant liners, ceramic-coated conveyor belts, and automated lubrication systems extends equipment life and reduces maintenance downtime.
4. Logistics and transportation bottlenecks
Moving bulk materials from cement plants to distribution centers requires an efficient logistics network. Rail and road congestion, inadequate infrastructure, and high transportation costs often result in delays and increased operational expenses.
- Solution: Integrated bulk terminals and automated dispatch systems improve supply chain efficiency. The Indian government’s push for multi-modal logistics parks (MMLPs) is expected to enhance cement transportation efficiency.
Indrendra Singh Raghuwanshi, Sales Head – Cement Division, ATS Conveyors, says, “Ensuring that our systems handle diverse alternative fuels reliably is at the core of our engineering approach. Alternative fuels, such as biomass, MSW, RDF and industrial waste vary significantly in terms of composition, size, moisture content, and combustibility. All our systems are designed with flexibility and robustness to meet the unique challenges posed by these fuels while maintaining operational efficiency and safety. Also, before deployment to site, we conduct extensive testing for our equipment to ensure that they can reliably handle alternative fuels under a variety of conditions. This includes testing different fuel types, moisture levels, and feeding rates to identify any potential challenges. Our systems are then fine-tuned during the commissioning phase to ensure optimal performance in real-world conditions.”
The future is automation and digitalisation
The future of bulk material handling in the cement industry lies in automation, artificial intelligence (AI), and digital twin technologies. Leading cement manufacturers are investing in IoT-enabled bulk handling systems that provide real-time monitoring, predictive maintenance, and AI-based process optimisation.
1. Smart sensors and predictive maintenance
AI-powered sensors are now being integrated into conveyors and stackers to detect early signs of wear and tear, enabling proactive maintenance and reducing unplanned downtime.
Nishith Kundar, Co-Managing Partner, Cemtech Engineering Solutions, says, “One of our latest advancements is the introduction of drone inspection technology. Since silos are confined spaces, it is often difficult to assess their internal condition, particularly at the top. We have incorporated drone inspections for both pre-cleaning and post-cleaning assessments. Pre-cleaning drone inspections help us analyse the extent of material buildup, while post-cleaning inspections ensure that the silo has been thoroughly cleaned. This technology is also applicable to pre-heaters, allowing us to monitor internal conditions in confined spaces. By leveraging drone technology, we provide precise and efficient cleaning services, improving safety and operational efficiency.”
2. Digital twin technology
Digital twin models create a virtual replica of bulk handling systems, allowing operators to simulate various scenarios and optimise material flow before implementing changes in real time.
3. Automated Guided Vehicles (AGVs) and robotics
The adoption of AGVs and robotic material handling systems is gaining traction in cement plants for automated raw material transport, warehouse management, and truck loading/unloading.
Gaurav Gautam, Business Unit Head,
Beumer Group, says, “A major recent focus has been integrating digital monitoring tools into our equipment. These tools include condition monitoring sensors that track temperature variations, vibrations and operational anomalies in real-time. By capturing this data, plant operators can take proactive actions when conditions start deviating from normal parameters. This approach prevents sudden breakdowns and, in the long term, enhances the durability and reliability of the equipment.”
“Moving forward, digitalisation will play a key role in tackling wear and tear challenges. By increasing the number of data capture points and applying advanced analytics tools, we can gain deeper insights into equipment health and performance, ensuring a more efficient and predictive maintenance strategy,” he adds.
Conclusion
Efficient bulk material handling is the backbone of cement manufacturing, ensuring a seamless flow of raw materials and finished products while minimising environmental impact and operational costs. As India’s cement industry moves towards higher production capacities and stricter environmental norms, investing in advanced, automated and energy-efficient bulk handling solutions will be key to maintaining competitiveness.
By embracing smart technologies, automation and sustainable handling practices, cement manufacturers can enhance productivity, reduce material losses, and contribute to a greener and more efficient future for the industry.
Trending News
-
Concrete4 weeks ago
UltraTech Expands Cement Capacity in West Bengal
-
Uncategorized4 weeks ago
Baldota Group to Set Up Rs 540 Billion Steel Plant in Koppal
-
Economy & Market2 weeks ago
Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad
-
Concrete4 weeks ago
Decarbonisation is a focus for our R&D effort