Connect with us

Economy & Market

GST regime is full of challenges and needs resilience

Published

on

Shares

Endorsed as "Good & Simple Tax", Amman Devralia, Executive Director, KHD Humboldt Wedag, has a high expectation that it will buoy the Indian economy and bring the informal sector into the formal sector. In an interview with Nitin Madkaikar, Devralia reiterates its success will depend on the readiness of the entire supply chain (suppliers, distributors, retailers, logistics partners etc.) to adopt the regime. Is the GST regime conducive as it described before the launch on July 1, 2017?
GST has been endorsed as "Good and Simple Tax". ‘Good’ because it minimises the cascading effect of taxes (i.e., levying of tax on things that have already been taxed), thereby reducing the cost of doing business, and ‘Simple’ as it replaces multitude of indirect taxes, thereby increasing ease-of-doing business.
There are huge expectations that the biggest indirect tax reform will boost the Indian economy in the long run and huge shift will be seen from unorganised to organised sector. However, a period of three months is too short to come to a conclusion.
The fundamental aspect of GST is the seamless flow of input tax credit along the entire value chain, wherein credit of taxes paid on inputs at each stage is available in the subsequent stage of value addition, thereby making GST essentially a tax only on value addition at each stage. The ability to claim input tax credit under the GST regime depends on timely compliance and matching of data filed by the parties along the entire supply chain. Any lapse on part of the supplier may lead to denial of input tax credit in the hands of the recipient, thereby casting an additional burden on the recipient to ensure timely compliance by the supplier. As a safeguard, two-stage payment mechanism is being followed by the recipient wherein the basic portion is paid upfront to the supplier and tax portion only after reconciliation of data filed in the respective GST returns.
Some of the concerns includes:
a) readiness of the entire supply chain;
b) un-interrupted connectivity to GST Network;
c) increased level of compliance and reporting on a monthly basis. Reports say that three returns have to be filed each month. Is this posing any operational problem/s in the supply chain?
Large entities were filing at-least three returns each month under different indirect tax laws (i.e. excise return, first stage dealer return, VAT and CST return) under the erstwhile tax regime as well. The real pain area under the GST regime as compared to the erstwhile tax regime is the level of compliance and reporting required to be done on a monthly basis. Entities are required to enter invoice level details in the monthly GST returns, which is a cumbersome process. Smaller entities without the required infrastructure are finding it difficult to manually enter invoice level details and large entities are facing infrastructural bottlenecks in uploading huge volume of data. In some ways, the government has outsourced the tax compliance to businesses in order to ensure compliance along the entire supply chain. Are you satisfied with the procedures that came into force after July 1?
The design of a single IT platform – GST Network – as a common interface between the tax payers and tax authorities for the core functions of administration (like, registration, filing and processing of returns, payments and refunds), is definitely a step towards paperless regime. However, provisions with respect to self-invoicing and payment vouchers for inward supplies from unregistered vendors, issuance of advance receipt vouchers on receipt of advances from customers, etc., entails additional paper work. Further, the ongoing glitches in the GST Network has been disappointing and raises doubts about the operational capacity of the GST Network, which is the foundation for paperless regime. The three months being seasonally weak for the industry, what was the impact on business compared with the past weak seasons?
As per industry reports, cement production witnessed a decline of 3.9 per cent in Q1FY17. Cement production stood at 72.67 million tonne (MT) in Q1FY17 as compared to 75.7 MT in Q1FY16. The decline was due to low inventory addition in the real estate and housing sector (accounting for about two-third of the total cement consumption in India), as the regulations and compliances under newly implemented Real Estate (Regulation and Development) Act, 2016 – RERA, made the developers cautious. With RERA implementation to be completed by the end of Q2FY17, clarity on the impact of GST on the real estate and housing sector coupled with government’s initiatives towards building affordable housing should eventually drive the demand for cement from the real estate and housing sector. Also, public infrastructure development lead by execution of smart cities and national highways projects across the country should drive the demand for cement from the infrastructure and construction sector in the next quarters. Has the need for working capital risen, given that refunds are still locked with exchequer?
Yes, under the erstwhile tax regime, exporters enjoyed upfront tax exemption on purchases against concessional tax forms, which is not available under the GST regime. Under the GST regime, GST paid on inward supplies is required to be claimed as refund by the exporters. However, due to glitches in the GST Network, the deadline for filing GST returns for July 2017 (the first month under the GST regime) has been extended twice, with GSTR-3 now required to be filed as late as November 10, 2017. The extension in filing GST returns for the first and therefore subsequent months means delay in processing of refunds by the authorities thereby increasing the requirement for additional working capital. Do you think GST regime will attract investment in your end use industry?
The demand for cement is driven by real estate and housing sector, accounting for about two-third of the total cement consumption in India. The other major consumers of cement include infrastructure, commercial construction and industrial construction. Given the government’s initiatives towards building affordable housing and public infrastructure development, GST regime will certainly attract investment in the real estate and construction sector. Further, bringing the real estate under the ambit of GST can boost the investment in the sector. Is there any other information you wish to share.
The GST regime aims to widen the tax base by bringing the informal sector under the ambit of formal economy resulting in higher tax revenues for the exchequer, gradually allowing a move towards fewer slabs and lower GST rate. The transition has just started and the ride to make GST a "Good and Simple Tax" will be long and full of challenges requiring resilience on part of government and businesses. The successful implementation of GST will certainly drive the Indian economy offering opportunities for growth across sectors.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Balancing Demand and Sustainability

Published

on

By

Shares

ICR discusses India’s rapid advances in renewable energy, on track to exceed its 2030 targets, even as the rising energy demands challenge complete reliance on sustainable sources.

The cement industry, a cornerstone of infrastructure development, has long been associated with high emissions, particularly of CO2. This sector alone is responsible for approximately 8 per cent of global carbon dioxide emissions, primarily due to the energy-intensive processes of clinker production and calcination. Beyond carbon emissions, cement production also generates particulates, nitrogen oxides (NOx), sulphur oxides (SOx), and other pollutants, contributing to environmental degradation and health risks. With the global push towards sustainable practices and carbon neutrality, addressing emissions in the cement industry has become imperative.
According to Climate Change Performance Index, India ranks 7 in 2024. India receives a high ranking in the GHG Emissions and Energy Use categories, but a medium in Climate Policy and Renewable Energy, as in the previous year. While India is the world’s most populous country, it has relatively low per capita emissions. Data shows that in the per capita GHG category, the country is on track to meet a benchmark of well below 2°C.
India’s situation underscores the complexity of transitioning to sustainable energy systems in the face of rising and fluctuating energy needs. International support is crucial for India to access advanced technologies, financial resources, and best practices that can accelerate its transition to a sustainable energy future. Our analysis shows that with current policies, India will overachieve its conditional NDC targets of achieving 50 per cent non-fossil capacity by 2030, so it could set stronger targets. India has ambitious renewable energy plans as outlined in the National Electricity Plan 2023 (NEP2023) aiming for a share of installed capacity of 57 per cent and 66 per cent in 2026-27 and 2031-32, respectively. Share of renewable energy capacity in India reached 44 per cent, ranked fourth in the world in renewable energy capacity installations in 2023, after China, the US and Germany. The NEP2023 is reflected in the lower bound of our current policy and action pathway.
India has seen a steady increase in renewable energy deployment, including both utility-scale and rooftop solar, leading to the share of coal capacity dropping below 50 per cent for the first time. However, this increase in renewable energy capacity is barely able to keep up with the surging demand. As a result, the electricity generation share of renewable energy, including large hydro, remains at around 18 per cent, showing no improvement since last year. Investment in renewable energy projects in India are projected to increase by over 83 per cent to around USD 16.5 bn in 2024, with fossil fuel companies also diversifying their investments into the renewable sector. Despite this, India has not committed to phasing out coal power or fossil gas.
The National Electricity Plan indicated a temporary halt in coal capacity addition, but current under-construction capacity exceeds the threshold stated in these plans. While new gas power projects have been abandoned, the utilisation of existing gas power plants has increased to meet energy demand driven by severe heat stress.

Understanding Emissions in Cement Production
Primary Sources of Emissions: Cement production emissions stem mainly from three sources: calcination, fuel combustion, and electricity use. During calcination, limestone is heated to produce clinker, releasing CO2 as a by-product. This process alone accounts for roughly 60 per cent of emissions in cement manufacturing. The remaining emissions result from burning fossil fuels in kilns to achieve the high temperatures needed for calcination and from electricity consumption across production stages.
Raju Ramchandran, SVP Manufacturing (Cluster Head – Central), Nuvoco Vistas, says, “We consistently track air emissions from fuel combustion in our cement manufacturing and power generation operations. The burning of fossil fuels releases pollutants such as Oxides of Sulphur (SOx), Oxides of Nitrogen (NOx), and Particulate Matter (PM), which require stringent monitoring.”
“We ensure compliance with regulatory standards by using the Continuous Emission Monitoring System (CEMS) to monitor these emissions. For the FY 23-24, both our stack and fugitive emissions have stayed within the permissible limits set by Pollution Control Boards. Moreover, our ongoing monitoring of fugitive emissions ensures that we meet the prerequisite air quality standards,” he adds.
In addition to CO2, the cement industry releases various pollutants that pose risks to air quality and public health. These include particulate matter, NOx, and SOx, which can lead to respiratory and cardiovascular issues, acid rain, and ecosystem imbalances.
Governments worldwide are setting increasingly stringent regulations to curb industrial emissions. Standards such as the EU Emissions Trading System and India’s National Action Plan on Climate Change encourage cement manufacturers to adopt cleaner technologies. Many countries now impose limits on NOx, SOx and particulate emissions, with the aim of minimising the industry’s environmental impact.

Challenges in Reducing Emissions
High carbon intensity of cement production: Cement’s high carbon intensity largely stems from the chemical reactions involved in transforming limestone into clinker, making emissions difficult to reduce without altering core processes. Additionally, achieving the necessary kiln temperatures requires significant energy, often derived from coal or natural gas.
Operational limitations: Altering the traditional cement production process can compromise the quality and durability of the end product. Adapting existing production lines for lower emissions involves extensive R&D and technical trials to ensure the finished cement meets industry standards.
Financial constraints: The cost of implementing green technology is high, creating economic challenges, particularly for smaller cement manufacturers. Equipment upgrades, energy-efficient kilns, and carbon capture facilities require considerable investment, which many companies find difficult to justify without strong financial incentives.
Balancing market demands and environmental goals: With global infrastructure demands rising, the cement industry faces pressure to meet growing production needs while simultaneously working to reduce emissions. Balancing these competing demands requires innovation, efficient resource management, and support from stakeholders.

Technological Innovations for Emission Reduction
Alternative fuels and energy sources: One of the most effective ways to reduce emissions is by replacing fossil fuels with alternatives like waste-derived fuels, biomass, or biofuels. Some manufacturers are incorporating solar and wind energy to power auxiliary processes, further reducing reliance on traditional energy sources.
Sudhir Pathak, Head- Central Design & Engg (CDE), QA, Green Hydrogen, Hero Future Energies, says, “The cement industry is one of the largest consumers of grid power (Scope 2) and also a guzzler of in-process fossil CO2 (Scopem1) including process-based CO2 through limekilns. Decarbonisation can be achieved only up to 50 per cent to 60 per cent through plain hybrid solar and wind. However, for achieving balance 40 per cent, storage is essential, be it chemical or mechanical. Today, HFE is ready to provide such bespoke storage solutions as is evident through several complex RTC tenders that we have won in the last 6-8 months floated by agencies like SECI, NTPC and SJVN. These include tenders for FDRE projects, peak power, load following, etc. Further, regarding green hydrogen and its derivatives, we are ready to apply these for decarbonising industrial heating and mobility.”
Carbon Capture and Storage (CCS): CCS technology captures emissions at the source, storing CO2 to prevent it from entering the atmosphere. Recent advancements in CCS technology make it a viable option for large-scale cement plants, although high costs and infrastructure requirements remain obstacles to widespread adoption.
Clinker Substitution: Reducing clinker content is a promising method for emission reduction, achieved by using supplementary cementitious materials (SCMs) such as fly ash, slag, and calcined clay. These materials not only reduce CO2 emissions but also enhance the durability and performance of cement. SCMs are gradually becoming industry-standard components, especially in eco-friendly and green cement products.
Rajesh Kumar Nayma, Assistant General Manager – Environment, Wonder Cement, says, “The use of AFR plays a critical role in our strategy to reduce the environmental footprint of cement production. By substituting traditional fossil fuels with waste-derived alternatives like biomass, refuse-derived fuel (RDF) and industrial by-products, we significantly lower CO2 emissions and reduce the demand for natural resources. The utilisation of supplementary cementitious materials (SCMs), such as fly ash, helps in reducing clinker consumption, which is a major source of carbon emissions in cement production. This not only decreases our reliance on energy-intensive processes but also promotes waste recycling and resource efficiency. AFR adoption is an integral part of our commitment to the circular economy, ensuring that we minimise waste and optimise the use of materials throughout the production cycle, ultimately contributing to a more sustainable and eco-friendly cement industry.”
“WCL is exploring transitioning from fossil fuels to cleaner alternatives like biofuels or hydrogen or RDF/plastic waste/other hazardous waste. Till date, 5 per cent TSR has been achieved, while the intent is to achieve more than 20 per cent TSR. WCL is utilising the hazardous and other waste as an alternative fuel or raw material. We have used more than 3 lakh metric tonne of hydrogen waste and other waste in FY-2023-24,” he adds.
Improving energy efficiency is critical for emissions reduction. Technologies like high-efficiency kilns, heat recovery systems, and process optimisation techniques are helping manufacturers achieve more output with less energy. These measures reduce the carbon footprint while lowering operational costs.

The Role of SCMs
SCMs serve as partial replacements for clinker, providing a dual benefit of reduced carbon emissions and improved product resilience. The use of materials like fly ash and slag also helps mitigate industrial waste, contributing to a circular economy. Fly ash, slag, and silica fume are among the most widely used SCMs. Each has unique properties that contribute to cement’s strength, workability, and durability. By incorporating SCMs, manufacturers can produce cement with a lower environmental footprint without compromising quality.
While SCMs are effective, several obstacles hinder their widespread adoption. Supply chain constraints, material variability, and lack of technical standards are challenges that manufacturers face. Additionally, geographic limitations impact access to certain SCMs, creating disparities in their usage across regions.

Policy and Industry Collaboration
Policies play a critical role in driving green transitions within the cement industry. Carbon credits, tax incentives, and funding for R&D are some measures governments have introduced to support emission reduction. India’s Perform, Achieve, and Trade (PAT) scheme is an example of a policy incentivising industrial energy efficiency.
Collaborations between government entities, private corporations, and research institutions foster innovation and accelerate the adoption of sustainable practices. Partnerships can also help address funding gaps, allowing companies to explore new technologies without bearing the full financial burden.
International frameworks such as the Paris Agreement and industry-led efforts like the Global Cement and Concrete Association (GCCA) are setting targets for sustainable cement production. These initiatives encourage the sector to adopt environmentally friendly practices and set a roadmap toward achieving net-zero emissions.

Towards a Net-Zero Future
Reaching net-zero emissions is an ambitious but necessary goal for the cement industry. Realistic targets, set with interim milestones, allow companies to gradually transition to greener processes while maintaining production efficiency. Continued investment in R&D is crucial for discovering new methods of emission reduction. Emerging technologies such as carbon-negative materials, alternative binders, and low-carbon clinkers hold promise for the future, potentially transforming cement production into a more sustainable process.
Increasingly, consumers and investors are prioritising sustainability, placing pressure on companies to reduce their environmental impact. This shift in consumer sentiment is driving the cement industry to adopt green practices and focus on transparency in emissions reporting.

Conclusion
The journey toward reducing environmental impact in the cement industry is complex and multifaceted, requiring a combination of innovation, policy support, and industry collaboration. By adopting alternative fuels, implementing carbon capture technology, integrating SCMs, and improving energy efficiency, the industry can take significant strides in minimising its carbon footprint. Achieving sustainability in cement production is essential not only for the industry’s future but also for the planet’s well-being. Together, industry players, policymakers, and consumers can support the transition to a net-zero future, ensuring that cement remains a vital yet sustainable component of global infrastructure.

– Kanika Mathur

Continue Reading

Concrete

Maximising AFR in Cement Manufacturing

Published

on

By

Shares

Shreesh A Khadilkar, Consultant and Advisor, and Former Director Quality and Product Development, ACC Ltd Thane, discusses the importance of optimising the use of alternative fuel and raw materials (TSR percentage) in cement production without affecting clinker quality, in part one of this two-part series.

Over the past decade or so, the Indian cement industry has made significant progress in terms of improvement in energy efficiency and productivity. However, the use of alternative fuel and raw material (AFR) to replace coal for thermal energy needs, remains an area where the Indian cement industry is yet to catch up with global benchmarks. Though a few cement plants co-process large quantities and varieties of AFR in their kilns, and are reported to reach a level of around 40 per cent Thermal Substitution Rate (TSR), many plants are still at much lower levels of TSR percentage.
Most of the cement plants have now installed co-processing facilities or are on the verge of having one. Some of the plants also have pre-processing facilities, which could include shredding, segregation, impregnation, foreign body removal etc., while some others source a pre-processed solid AFR (RDF, MSW, Industrial waste sludges, agro wastes etc.).
This article shares important aspects such as assessment of clinker quality in plant clinker quality optimisation, influence of alkalis, chlorides and SO3, effects of some important minor constituents and subsequently discusses the concept for maximising AFR (TSR percentage) without affecting clinker quality through with or without use of XRD technique for in process control. The author further recommends bi-hourly quality and in process dashboard for consistent kiln performance and consistent clinker quality.

Assessment of Clinker Quality
The clinker quality assessment can best be done by Lab Ball Mill grinding of day average clinker with mineral gypsum (with SO3 of the lab ground cement targeted at 2.2 to 2.4 with fixed grinding time to achieve Blaine’s of around 300-320 M2/kg with the residue on 45 microns of the cement in range of 18 per cent to 20 per cent, at this fineness, the clinker is observed to clearly depict changes in clinker reactivity in terms of changes in 1 Day strengths of cements (± 3 to 5 MPa). At lower grinding Blaine’s (of around 250 M2/kg), which is presently being practiced by many cement plants, one does not observe the changes in clinker reactivity, as the difference of 1 Day compressive strengths is only ± 1 MPa, which does not show the changes in clinker reactivity.
Typically, clinkers with good reactivity are observed to show 1 Day strengths in lab ground cements of 30 to 35 MPa. Higher values being observed when clinker alkali sulphates are high (especially with Petcoke as fuel), the achieved Blaine’s and quantity of nibs removed from the lab ground cement, in the fixed grinding time is also indicative of clinker grindability. Judicious raw mix optimisation with existing or alternative corrective materials (with the fuel mix used by the plant) can be attempted so as to have a clinker with improved reactivity/hydraulic potential. In a running plant the approach has to be by attempting small gradual changes to clinker composition and assessing the impact of the changes, on kiln performance and clinker quantity.
The changes to be attempted could be indicated through data analysis.
In each plant, the QC and process has detailed analysis data of the day average clinkers along with its lab ground cement test results. It is also suggested to test at least one spot clinker per day for chemical parameters and physical tests of lab ground cement. From the analysis data it could be observed that on some days the lab ground cements show much higher strengths. Why on some days or in some spot clinkers, the clinker reactivity is suddenly very good? Such clinkers should be preserved and evaluated by XRD, so as to identify the optimum clinker composition which shows higher reactivity. Such an evaluation could also indicate at times the impact of changes in fuel / sources of coal / proportions of coal and Petcoke (even source of Petcoke) / solid AFR usage levels.
Typically, the target clinker composition to give a good hydraulic potential would be with LSF of 93 to 95 with a bogues potential C3S of >55 per cent clinker (especially with Petcoke as main fuel in fuel mix), with C3A (6.5 per cent to 8.5 per cent) if the clinker is used for PPC/PSC and also for OPC (especially if OPC is supplied to RMX customers) and SM 2.2 to 2.4 A/F 1.2 to 1.4. In plants where clinker MgO is higher (> 4.5 per cent), besides having the LSF target of around 93 to 95, the minimum clinker lime targeted should be such to have C/S ratio of 2.95 to 3.1 for having good clinker reactivity in spite of high clinker MgO.

Co-Processing of AFR (Liquid AFR /Solid AFR)
The properties of AF(R) co-processed in the calciner have an impact on environment, health and safety, plant operations and product quality as shown in Table 1:

  • Alkalis without sulphidisation: Formation of orthorhombic C3A, fast setting
  • Alkali sulphates (Na2SO4, K2SO4, 2CaSO4.K2SO4 or even Ca-langebnite): Increased early strength, usually shows decrease of later age strengths. Changes must be accounted for in gypsum optimisation
  • Excess of sulphur over alkalis
  • Integration of SO3 in C2S and/or formation of CaSO4
  • Possible reduction of final strength could be observed
  • Reduces the CaO availability for C3S formation
  • The clinker could be harder to grand
  • Changes the Clinker Liquid Characteristics which affects the phase formations
  • Chlorides tend to be higher in AFR liquid/solid, the control on chlorides is necessary to prevent inlet/cyclone jamming and to have < 0.06 per cent in clinker, so that the OPC has <0.04 per cent chlorides and is suitable for
  • RMC/structural concrete. To avoid problems of kiln inlet and cyclone jamming caused by SO3 and Cl. Preferably maintain the Hot Meal (2 Cl + SO3) < 3.5. The threshold value for a given plant needs to
    be assessed.

If the value goes above the plant threshold value, immediate actions of adding caustic soda for 2 to 3 shifts (in small polyethene bags) should be done to remove the depositions and avoid kiln stoppage.

Effects of some minor constituents on the clinker quality

Effects of ZnO

  • Zinc in clinker nearly distributes evenly between the silicates ad matrix phases (with preference to ferrite), trigonal C3S and ß C2S is stabilised by zinc.
  • Presence of zinc reduces the amount of aluminates in favour of alumino ferrite.
  • Each 1 per cent zinc reduces aluminates by
    1 per cent and increases alumino-ferrites by
    2 per cent.
  • Zinc is very effective flux and mineraliser, it lowers clinkerisation temperatures and accelerates lime combination. Knofel reports increased comp. strengths by up to 20 per cent and above at early ages.

Effects of TiO2

  • The clinker TiO2 should be <0.7 per cent, it should be noted that TiO2 is a viscous flux like Al2O3 and so for understanding the clinker liquid property for good C3S formation and based on the kiln conditions adjust the clinker Fe2O3 contents accordingly.
  • At higher TiO2, contents for improved kiln conditions the clinker Fe2O3 content needs to be much higher which is aggravated if clinker SO3 is higher (which also affects the viscosity of clinker liquid)
  • At high total liquid the clinker becomes silica deficient and so free lime tends to be higher (with clinker balls with calcined un sintered material inside)
  • In plants that use red mud especially with petcoke due to its higher alkalis, many sources of red muds also have TiO2, the plant should target Al2O3 + TiO2 as the viscous flux and then adjust the clinker Fe2O3 to get good kiln conditions as indicated above. Targeting higher liquid only increases the limestone LSF from mines and also affects clinker grindability.

Effects P2O5 sources

  • Many types of agriculture waste, biowastes, phosphate sludge, paint sludges, medical waste, RDF/municipal solid waste, expired detergent, cow dung cakes, etc.
  • Under Indian conditions of clinker phase composition, any increase of P2O5 contents can substantially affect clinker quality.
  • When higher P2O5 are present, the dicalcium silicate (C2S) is stabilised and inhibits formation of alite (C3S) i.e can decrease the percentage of C3S although bogue may show high percentage C3S.
  • When P2O5 present exceeds 0.4 per cent in the clinker it reduces the percentage of C3S by 10 per cent and 1 Day Comp. Strengths by around 5-6 MPa with negative effects on clinker reactivity and setting of cement.
  • Use of wastes containing phosphates in controlled manner so that P2O5 in the clinker (maximum limit in clinker is 0.25 per cent) can enhance the use of agricultural waste or use of other wastes with P2O5. It may be noted that in some regions limestone and laterite also have shown P2O5 contents.
  • In some plants up to 5 to 7 per cent TSR there is no impact observed on quality or productivity, however as the TSR/AFR percentage is increased say above >8 per cent to 10 per cent, the kiln conditions get frequently disturbed with a very high dust generation and there is a drop in clinker reactivity/quality.

In the plants a judicious study of process conditions and understanding the burnability of kiln feed could help achieve productivity without affecting the clinker quality with increased AFR/TSR.

In one of my consultancy visits to an integrated plant, similar observations as above were reported. In a brainstorming discussions with the plant process, production and QC teams, it was noted that:

  • There was substantial variation in calciner outlet/kiln inlet material/C6 material temperature it fluctuated from around 920oC to as low as 860oC, these changes in temperatures nearly corresponded with the fluctuation in percentage of moisture and feed rate of solid AFR (SAFR), RDF and other solid wastes.
  • The kiln torque decreased below the desired levels, when the calciner outlet and kiln inlet material temperatures (in this case C6 material temperatures) were less than 890oC and the kiln performance showed high dust recirculation/generation.
  • The bi-hourly XRF analysis of clinker showed lower LSF/high free lime. The decrease in clinker LSF was understandable as the SAFR ash showed a higher percentage of ash.

It was decided to collect hot meal samples 900oC to 910oC and 920oC to 930oC and also corresponding clinker samples collected after 40 minutes of the sample collection time of hot meal samples. The hot meal samples were analysed for XRD and clinker samples for XRF (Chemical analysis with free lime) and XRD (for clinker phase formation).
The XRD analysis of hot meal samples is shown in Table 2.
The XRD analysis indicates that:

  • The calcination percentage is much higher than the convention DOC of hot meal samples.
  • The un-combined CaO decreases with increase in temperature of collected sample.
  • The total belite increases with increase in temperature.

It was observed in the plant that when attempts were made to maintain the kiln inlet material temperature at 910oC to 920oC, the kiln torque showed an improvement and the kiln performance improved. The clinker quality showed improvements with lower free lime. However due to the fluctuations in ash percentage content of SAFR the clinker LSF showed lower values during the day. As a corrective action, lime sludge (available at the plant) was added on the SAFR conveyor. These corrective actions helped achieve a consistent improved clinker quality.

About the author:
With an MSc in Organic Chemistry from Jodhpur University (now JNV University), Shreesh Khadilkar joined ACC’s Organic Chemical Product Development Division in 1981 and later transitioned to the Cement R&D Division as a technical assistant. He took over as VP of R&D (Quality and Product Development Division) and retired as Director of the department in 2018, with over 37 years of experience in cement manufacturing and cements/cementitious products.

Continue Reading

Concrete

Red River Formation in Kiln Operations

Published

on

By

Shares

Dr SB Hegde, Professor, Jain College of Engineering and Technology, Hubli, and Visiting Professor, Pennsylvania State University, USA, helps us understand the red river formation in cement kiln operations, its causes, impacts and mitigation strategies.

Red river formation in cement kilns, where molten clinker flows uncontrollably in the cooler, is a costly problem for cement plants. The phenomenon not only affects clinker quality but also leads to significant operational disruptions, increased energy consumption and accelerated wear on kiln refractory bricks. Understanding the factors that cause red river formation and implementing strategies to prevent it are critical to maintaining operational efficiency and clinker quality.
This paper explores the causes of red river formation, the operational impacts it has on kiln performance, and the various mitigation strategies that cement plants can adopt. Additionally, safety considerations associated with the prevention and handling of red river formation are discussed, with practical insights from case studies of successful plant interventions in India and globally.

Causes of red river formation
Red river formation is primarily caused by improper kiln operations, including fluctuating kiln temperatures, oxygen levels, and cooler inefficiency. The following parameters are essential contributors:
Kiln temperature: Inconsistent temperature control in the kiln’s burning zone, often exceeding 1500°C, creates an imbalance between the solid and molten clinker phases, leading to red river formation. Maintaining temperatures within a more stable range of 1470-1490°C ensures that the clinker remains solid as it moves into the cooler.
Oxygen levels and CO concentrations: Oxygen levels above 2.5 per cent increase the risk of over-combustion, while elevated CO levels above 0.3 per cent indicate incomplete combustion, both contributing to excessive clinker melting. Optimising oxygen levels to 1.8-2.0 per cent minimises the risk.
Raw mix composition: The raw mix plays a vital role in clinker formation. A high liquid phase due to improper ratios of silica, alumina, and iron oxide can lead to excessive melting. Controlling the silica modulus (SM: 2.3-2.7) and alumina modulus (AM: 1.3-1.8) ensures a more stable clinker and reduces the risk of red river formation. If the raw mix is improperly proportioned, red river formation becomes more likely due to high fluxing compounds that melt at lower temperatures.
Kiln speed and torque: Kiln speeds that fluctuate below 3.4 rpm can cause material buildup, while kiln torque exceeding 50-60 per cent indicates stress that can lead to clinker instability.
Cooler efficiency: Inefficiencies in the clinker cooler, with efficiency levels below 78 per cent, can exacerbate red river formation. Clinker that is not cooled properly will remain molten for longer, allowing it to flow uncontrollably. Coolers should maintain exit temperatures between 180-200°C to prevent red river incidents.
Impact on clinker quality and kiln performance
The occurrence of red river has numerous negative impacts on both clinker quality and kiln performance:
Clinker quality: Red river formation results in poor clinker grindability, higher variability in free lime content and inconsistent cement properties. Poor clinker reactivity reduces both early and late strength development in the final cement product.
Increased heat consumption: Red river typically increases specific heat consumption by 3-5 per cent, resulting in higher fuel usage. These inefficiencies can significantly affect the plant’s cost structure, driving up operational expenses.
Refractory damage: The molten clinker accelerates the wear of refractory bricks in the kiln, especially in the burning zone and cooler transition areas. Brick life can decrease by 25-30 per cent, leading to more frequent replacements and higher maintenance costs.
Equipment and instrumentation damage: The uncontrolled molten flow of clinker during red river incidents can damage cooler plates, kiln discharge systems, and even temperature sensors and thermocouples, leading to costly repairs and prolonged downtime.

Mitigation strategies
Mitigating red river formation requires a multi-faceted approach combining operational optimisation, automation and staff training:
Kiln temperature control: Maintaining stable burning zone temperatures in the 1470-1490°C range is key to preventing excessive melting of clinker. Advanced temperature monitoring systems can help regulate temperature fluctuations.
Cooler efficiency optimisation: To ensure proper cooling, cooler efficiency must be maintained at 78-80 per cent, with clinker exit temperatures not exceeding 200°C. Real-time airflow adjustments in grate coolers improve cooling performance, solidifying the clinker at the appropriate stage.
Automation and data analytics: Advanced Process Control (APC) systems using data analytics can monitor critical kiln parameters—such as temperature, oxygen levels, and torque—in real-time, allowing for predictive maintenance and early intervention when red river signs appear. This technology has been implemented successfully in leading plants globally to prevent red river formation.

Indian case studies
Case Study 1: Cement Plant in South India – Optimisation of Kiln Parameters
A cement plant in South India faced recurrent red river issues due to high kiln temperatures and low cooler efficiency. After comprehensive process audits, the plant optimised its kiln temperature to 1480°C, reduced oxygen levels to 1.9 per cent, and upgraded its cooler to an efficiency of 80 per cent. These changes reduced red river incidents by 85 per cent, saving the plant Rs 10 million in energy costs annually and improving clinker quality by
15 per cent.

Case Study 2: Cement Plant in North India – Cooler Upgrade and Automation
A northern India plant increased cooler efficiency from 70 per cent to 78 per cent by installing an advanced grate cooler. This reduced clinker exit temperatures to 190°C, preventing red river formation. Automation systems provided real-time adjustments, decreasing the frequency of incidents by 75 per cent and saving `12 million annually.

Global Case Studies
Case Study 1: European Plant – Automation Success
A German cement plant, experiencing red river issues due to fluctuating oxygen levels, installed an advanced data-driven automation system. The system stabilised oxygen at 1.9 per cent and maintained kiln temperature at 1,475-1,485°C, reducing red river by 90 per cent. Clinker quality improved by 10 per cent, with a reduction in specific heat consumption by 4 per cent.

Case study 2: US Plant – Operator Training and Process Optimisation
A US cement plant reduced red river occurrences by 70 per cent through kiln speed optimisation (3.8 rpm) and comprehensive operator training. Improved monitoring of kiln torque and cooler exit temperatures led to higher cooler efficiency (75 per cent) and an annual savings of $2 million.

Safety Aspects
Safety is a paramount concern in red river incidents. When molten clinker flows uncontrollably, it poses a significant risk to personnel working near the kiln and cooler areas.

To mitigate these risks:

  • Clearance zones: Kiln and cooler areas should have strict clearance zones for personnel when red river incidents are detected.
  • Protective gear and training: Personnel should be equipped with proper protective equipment (PPEs) and trained to handle emergencies involving molten clinker. Emergency shutdown procedures should be well-documented and rehearsed.
  • Automation and early warning systems: Automation can provide early warning systems that alert operators to potential red river formation before it becomes critical, ensuring safe intervention.

Conclusion
Red river formation remains a major operational challenge for cement plants, but it can be effectively mitigated through proper kiln temperature control, cooler efficiency optimisation and the use of advanced automation systems.
The case studies highlight the importance of process improvements and staff training in reducing red river occurrences, improving clinker quality, and lowering operational costs. Additionally, safety
measures must be prioritised to protect personnel from the risks posed by molten clinker. By incorporating these strategies, cement plants can ensure consistent kiln performance and enhanced operational efficiency.

References
1. Duda, W. H. (1985). Cement Data Book. International Process Engineering in the Cement Industry. Bauverlag GmbH.
2. Javed, I., & Sobolev, K. (2020). “Use of Automation in Modern Cement Plants.” Cement and Concrete Research, 130, 105967.
3. Tamilselvan, P., & Kumar, R. (2023). “Optimisation of Kiln and Cooler Systems in Indian Cement Plants.” Indian Cement Review, 34(7), 42-48.
4. Martin, L. (2019). “Case Studies of Red River Mitigation in European Cement Plants.” International Journal of Cement Production, 12(2), 63-78.
5. Schorr, H. (2021). “Advanced Process Control in Cement Manufacturing.” Cement International, 19(3), 30-37.
6. Singh, V. K., & Gupta, A. (2022). “Impact of Raw Mix on Clinker Formation and Kiln Operations.” Global Cement Magazine, 14(4), 22-29.

About the author: Dr SB Hegde brings over thirty years of leadership experience in the cement industry in India and internationally. He has published over 198 research papers and holds six patents, with four more filed in the USA in 2023. His advisory roles extend to multinational cement companies globally and a governmental Think Tank, contributing to research and policy. Recognised for his contributions, he received the ‘Global Visionary Award’ in 2020 from the Gujarat Chambers of Commerce and Industry.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds