Technology
Reaching For the Sun
Published
8 years agoon
By
adminThe cement industry can adopt solar energy to reduce greenhouse gas emissions and become cost-competitive, while meeting its statutory obligations, say KAMLESH JOLAPARA, S BHATTACHARYA and S SEN.
Power is a critical component of infrastructure, crucial for the economic growth and welfare of a nation. The existence and development of adequate infrastructure is essential for sustained growth of the Indian economy.
Based on government records as of 30th September 2016, India has a total installed power capacity of 306,358 MW that includes thermal (coal, gas, and diesel), at 213,228 MW; nuclear power at 5,780 MW, hydropower at 43,112 MW, and renewable energy sources account for 44,236 MW.
Ref. Figure 1.
India is heavily dependent on fossil fuels for its energy needs. Most of the power generation is carried out by coal- and gas-based power plants which contribute heavily to greenhouse gas emission.
The Government of India?s immediate goal is to generate two trillion units (kilowatt-hours) of energy by 2019. This means doubling the current generation capacity to provide 24×7 electricity for residential, industrial, commercial and agriculture use.
A transition from conventional energy systems to those based on renewable resources is necessary to meet the ever-increasing demand for energy and to address environmental concerns in a sustainable way.
India ranks 3rd, just behind the US and China, among 40 countries with renewable energy focus, on the back of the strong thrust by the Centre on promoting renewable energy and implementation of projects in a time-bound manner.
In January 2016, the foundation stone for the International Solar Alliance (ISA) was laid in Gurugram, Haryana. The ISA has more than 120 member-countries, most of which are ideally located for solar power generation, wholly or partially between the Tropic of Cancer and the Tropic of Capricon. This emphasises the Government of India?s vision and policy thrust for future solar power generation.
The government has decided to substantially alter the energy mix that powers India in the future, such that at least 40 per cent of India?s total power capacity will come from renewable sources by 2030. This is as per the country?s targets under the Paris climate change agreement.
In order to achieve the country?s ambitious renewable energy targets of adding 175 GW of renewable energy, the Government of India is taking a number of steps and initiatives like the 10-year tax exemption for solar energy projects, and is planning to add 100 GW of solar power by the year 2022. The cumulative solar installations in India have crossed the 8.643 gigawatt (GW) mark in October 2016, according to Mercom Capital Group.
We will explore how the cement industry can integrate the renewable energy sources, especially solar energy, to reduce GHG emissions and to become cost competitive while meeting the obligations under RPO and PAT mechanisms.
Cement Industry in India
India ranks 2nd in the world in the production of cement with a total installed capacity of 378 mtpa in FY 2015.
Cement industry in India can be divided into the five geographical zones of India -North, South, East, West and Central based on localized variations in the consumer profile and supply-demand scenario.
According to Indian Minerals Year Book by Indian Bureau of Mines, TechSci Research, the South zone is largest market, with the highest installed capacity of 132.7 mtpa (FY15 Estimates) and followed by North, West, Central and East zones with installed capacity – 85.6 mtpa, 57.6 mtpa, 52.8 mtpa and 49.4 mtpa respectively. Ref. Figure 2 Currently, India has 210 large cement plants across states and is among the top ten exporters both by value and volume, says Cement Manufacturer?s Association (CMA) and TechSci Research Andhra Pradesh is the leading state with 40 large cement plants, followed by Tamil Nadu and Rajasthan having 21 and 20 plants, respectively. Major cement clusters include – Satna (Madhya Pradesh), Gulbarga (Karnataka), Yerranguntla (Andhra Pradesh), Nalgonda (Andhra Pradesh) and Chandoria (Rajasthan).
Cement demand in India is expected to increase due to government?s push for large infrastructure projects, leading to 45 million tonnes of cement needed in the next three to four years.
India Brand Equity Foundation (IBEF) predicts that India?s cement demand is expected to reach 550-600 Million Tonnes Per Annum (MTPA) by 2025.
Energy Consumption in Cement Industry
Few Industries in India have been identified as energy-intensive industries. These are Aluminum, cement, fertilizer, iron and steel, glass, and paper. Together they account for 17 per cent of manufacturing value of output (VO) and for 39 per cent of all fuels consumed in the manufacturing sector.
Cement industry is one of the most energy intensive industries, and energy costs account for a significant percentage (approximately 30-40 per cent) of the total manufacturing cost.
The annual energy consumption by cement industry contributes close to 10 per cent of the total energy consumed in entire industrial sector.
According to the Cement Manufacturers? Association, modern cement plants consume 68-93 units to produce a ton of cement while the older ones use up 110-120 units of electrical energy.
The cement industry has nearly 4,000 MW of installed captive power capacity, including coal-based plants, diesel generating sets and wind turbines to overcome rising power costs and uncertainty over supply.
Presently, the industry average for Captive Thermal Power generation cost varies between Rs. 3.50 to 4.50 / kWh and most plants are operating at around 30 per cent efficiency.
The major problem of the cement industry are related to ?power availability? that includes drastic cut in the electricity, shortage of coal, inadequate availability of wagons for transport, limited availability of furnace oil.
Some cement producers like Madras Cements, have put up captive power plants to take care of all their electricity requirements, while for others, such as ACC Ltd, captive power meets 72 per cent of its requirement.
The carbon footprint is nearly 1.3 kg/kWh for Captive Thermal Power plants in India. The overall CO2 emission is 866 kg/ ton clinker produced. The CO2 emission is around 670 kg/ ton of cement (PPC).
Sustainability in Cement Industry
Climate change and energy security are global challenges and cement industry recognizes the need to contribute its equitable effort as a function of its techno-economic and socio-economic development.
The cement industry recognizes the significant threat caused by climate change and focuses to develop its own renewable energy assets. This supports the vision to complement the existing power resourcing strategy with green power, efficient energy use planning and investment for better returns with sustainable energy growth. India has joined hands with Switzerland to reduce energy consumption and develop newer methods in the Country for more efficient cement production, which would help India, meet its rising demand for cement in the infrastructure sector.
An enormous energy saving is possible in cement sector by implementing the renewable energy sources especially Waste heat recovery and solar energy plants that reduce operating cost and improve the environment.
Potential Renewable Energy Projects in Cement Plant
The Indian cement industry has realized that strong business growth can be achieved by sustaining manufacturing in an eco-friendly manner. Most of the new cement plants are adopting green processes and green power generation to reduce Green-House-Gas (GHG) emissions. Some of the following renewable energy projects can be introduced in the cement plant to achieve clean and green plant.
Power plants based on renewable sources such as wind and solar energy has a great potential to become an integral part of new cement plants.
Waste Heat Recovery System (WHRS)
WHRS has a potential to generate about 20 per cent to 30 per cent of plant power requirements (reducing purchased/captive power needs). It uses hot gases from the clinker cooler or pre-heater to heat a liquid and generate steam, to generate in turn electricity for powering the cement plant. The power generation methods in WHRS work on Steam Rankine cycle, Organic Rankine cycle and Kalina cycle.
According to IFC (World Bank Group) report, the existing WHR installed capacity is more than 200 MW in India and there is potential to achieve remaining 500-900 MW with estimated investment potential of $1.4 billion.
Solar Power Plant
Solar energy has many merits compared to conventional power sources. The solar prices have been falling, and in many parts of India, the cost of solar power is less than the tariff of power for the industrial sector.
Since the solar plants have a lifetime of typically 25 years, the energy prices are locked in, unlike in the case of power from utility companies, which is only expected to increase every year.
By installing solar power plants and solar water heating systems, cement plants can not only meet the obligations under both RPO and PAT mechanisms, but also reduce greenhouse gas (GHG) emissions.
Most cement plants in India are located in dry and hot areas with enormous solar radiation and have huge amounts of unused, un-shaded arid land. This makes cement sector very ideal for deployment of solar power generation plants. Solar energy can be harnessed either by Solar PV or Solar Thermal (CSP-Concentrated Solar Power) Technologies.
Based on the available area within a cement plant, we can install the solar power plant considering the solar technology suitable for that geographical terrain. Some of the potential applications of solar energy in cement plants are listed below:
- Roof top solar PV panels to meet the power requirement of CCR, Admin buildings, remote lighting applications like mines
- Lighting requirements in Non-Plant Buildings, Internal roads, pumping water, guesthouse, township, parks, canteen, hospital, school and many more
- Energy requirement of auxiliary equipment, utilities
- Preheating of boiler feed water or raw materials
- Hot water requirement
- Other possibilities, if any
Wind Power Plant
A wind turbine is a system which transforms the kinetic energy available in the wind into mechanical or electrical energy that can be used for any required application. Some of the advantages of wind power plant are-one time installation cost, low operational and maintenance cost, no fuel cost, environment friendly and pollution free, lowest gestation period, limited use of land.
Wind farm is located in an area of high wind (usually at a distance to manufacturing facility) with power ?wheeled? through national transmission grid. It helps cement manufacturers to take advantage of solar as well as wind energy for their cement plants.About Solar Energy and Typical Parameters
Two major technologies have been developed to harness solar energy ? Photovoltaic Solar Technology and Solar Thermal Technology. PV solar technology directly converts sunlight into electricity using panels made of semiconductor cells while Solar Thermal Technology captures the sun?s heat that converts to mechanical energy and in turn electricity.
Availability of reliable solar radiation data is vital for the success of solar energy installations in different sites of the country (Refer Image -India Solar Resource). The geological locations having annual Direct Normal Irradiance (DNI) of 5.0 kWh/m2/day and above could be more suitable for solar power plant installation in India.
For solar collectors which are flat in nature, solar radiation data in the form of Global Horizontal Irradiance (GHI) is useful while for designing solar thermal power plants (CSP units); Direct Normal Irradiance (DNI) data is required.
Solar PV Technology
Some of the typical parameters need to be considered before implementing the solar PV power plant, such as:
- Installation type – On ground or Rooftop solar plant
- About 90 per cent solar plants are imple?mented with Polycrystalline as it offers higher efficiency at competitive price.
- Single axis tracking provides 15 per cent to 20 per cent higher output in Central & South India.
- Land requirement – Fixed axis requires 5 acres per MW while single axis tracking needs 6 acres of land per MW.
- The Installation cost of 1 MW solar plant is around INR 5 – 5.5 cr based on current cost parameters.
- Solar power generation depends on location, technology and design of the system. Typically for India – generation of 15,00,000 kWh/MW/year for fixed axis and 18,00,000 kWh/MW/year for single axis tracking can be considered.
- Project Execution – Typical cement plant requirement for RPO only: 1 to 5 MWp. The solar power project can be implemented in 3 to 4 months from the date of starting construction.
The cement plants having captive power plants, as well as those who are purchasing power through Indian Energy Exchange (IEX) are liable for Renewable Purchase Obligation (RPO) as stipulated by the respective state governments.
Regarding captive consumer, those generating and consuming power from captive coal/natural gas power plants (primarily industrial users in cement, steel, chemical etc. sectors.). The Regulatory Commission in each state mandates a certain percentage of electricity generated through the above process to be from renewable sources.
According to Ministry of New and Renewable Energy (MNRE), the National Tariff Policy was amended in January 2011 to prescribe solar-specific RPO be increased from a minimum of 0.25 per cent in 2012 to 3 per cent by 2022.
Many States have come up with up their own Solar Policy and they have their own Solar RPO targets.
Case Study – Solar PV Power Plant
Based on the typical brown-field 3000 TPD cement plant, the available rooftop area is around 18,000-19,000 m2 which shall usually cover all the roof top of the plant buildings, top of shed for material storages including the pre-blending stockpile, etc. which potentially harness rooftop solar power of appx. 1.8-1.9 MW (Open space for ground solar PV is not considered).
A typical 10 MWp PV plant example as per IFC report is given below to understand the various parameters of solar power plant.
- Generic cement plant, 2 million tons p.a. facility
- Power needs 25-30 MW, power consumption 198 GWh/year
- Land requirements : 20-30 ha
- Electricity production from Solar: 18-24 GWh/year or 9-12 per cent of total power needs
- Avoided emissions 15,000-20,000 tCO2e p.a.
- SPV CAPEX ~$ 15 m, Unlevered project IRR 13-15 per cent
- Cement company savings ~$1.2 m p.a. (off-balance sheet)
Solar Thermal (CSP) Technology
Solar thermal technology can be used for industrial processes in several ways. It can provide warm water for processes; hot air for drying the raw materials or it can also be used in preheating the boiler feed water either in captive power plant or WHR system.
Several solar thermal power plants have been built in India, using both flat plate collectors and concentrator technologies. It will continue to provide reliable source for grid-connected power.
Solar thermal (CSP) technology can be integrated with existing (steam cycle) based plants (Coal, nuclear, CCGT, biomass) at various stages in the process (feed water heating, direct steam generation) which can save CAPEX on turbine (including auxi?liaries) and augment conversion efficiency.
Installed Solar Power Plants in Cement Sector in India
Several cement manufacturers like Aditya Birla Group, Zuari Cement, Birla Corp and Ambuja Cement, Dalmia Cement etc. have all ventured into solar power generation in India.
Aditya Birla Group was one of the pioneers, having set up a 100 kW solar power plant in its Rajashree cement plant in Karnataka in 2012. Zuari Cement set up a solar power plant in Yerraguntla district in Andhra Pradesh in 2013.
Cement companies such as Emami cement, OCL India, Ultratech cement, Birla Corp at Satna works have installed the solar power plants of 10.06 MW, 5.5 MW, 2.5 MW, and 1.5 MW capacities respectively.
Favorable Solar Energy Regulations in India
The Indian policy for solar power plant greatly favors investors as it gives many benefits over conventional plants & machinery.
An accelerated depreciation of nearly 80 per cent as compared to 15 per cent for normal plant and machinery is considered for solar plants that results in huge tax savings for the cement manufacturers.
Favorable land laws and other subsidy for solar power generation in cement producing states such as Karnataka, AP, Rajasthan, MP and Telengana.
While cement industries in all states can explore solar projects, those in Karnataka, AP and Telengana states, can benefits due to favorable wheeling, banking and CSS charges for open access model.
Conclusion
As demand for power increases in India due to industrial and population growth, fulfilling the energy requirement could be a challenge in years to come. However, achieving the energy goals will become much easier with more emphasis from the Indian government and corporate world on renewable energy sources especially on solar power plants. Cement industry in India can play a major role in this area. There are many favorable factors for installing the solar power plant in cement industry such as reduction in installation cost of solar plant, increasing fuel cost, Indirect effect on PAT as the RE power is out of boundary limit, possibility for selling E-Certificate if the reduction target is fulfilled and finally but not the least, solar power will be profitable business in years to come.
The government also needs to play a major role, in fast development of this sector by providing necessary policy supports, incentives and judicious tariff plan mechanism.
There will be a few initial hurdles that will have to be crossed before the cement sector becomes truly appreciative of the solar technology for power generation.
-
The solar technology providers will have to educate the users regarding the feasibility of their installations.
-
Consultants like ERCOM will have to technically assist the cement plant owners during all stages of the projects right from initial feasibility study till successful implementation, so that the solar installations are successful.
-
Cement plant owners will have to get over their inhibitions and embrace new technology which will enable them to have sustainable growth while reducing their energy costs and protecting the environment for future generation.
Authors:
Kamlesh Jolapara
Suchismita Bhattacharya
S Sen
All from Ercom Engineers
Energy mix that powers India in the future, such that at least 40 per cent of India?s total power capacity will come from renewable sources by 2030
By integrating advanced technologies like IoT and AI, cement plants are transforming into highly efficient and interconnected systems. ICR explores how these innovations enable real-time monitoring and predictive maintenance, significantly reducing downtime and operational costs.
The cement industry, traditionally known for its reliance on heavy machinery and manual processes, is undergoing a significant digital transformation. This shift is driven by advancements in technology that promise to enhance efficiency, reduce costs, and improve overall production quality. Key trends include the adoption of the Internet of Things (IoT), which enables real-time monitoring and control of production processes through interconnected devices. Artificial Intelligence (AI) and Machine Learning (ML) are being utilised to optimise operations, predict maintenance needs, and minimise downtime by analysing vast amounts of data. Additionally, the integration of Big Data analytics allows for more informed decision-making by providing insights into production trends and potential areas for improvement.
“One of the key advantages of integrating data across our systems is the ability to have a more transparent, agile, and integrated supply and logistics chain. With the implementation of Oracle Logistics Management Solution, we have been able to overcome challenges related to consignment locations and truck movements, providing real-time visibility into our operations. This has also led to operational efficiency improvements and the ability to predict consignment delivery times, which we share with our customers, enhancing their experience” says Arun Shukla, President and Director, JK Lakshmi Cement.
According to BlueWeave Consultancy, during the forecast period between 2023 and 2029, the size of India cement market is projected to grow at a CAGR of 9.05 per cent reaching a value of US$ 49.24 billion by 2029. Major growth drivers for the India cement market include the growing need from construction and infrastructure sectors and rising governmental initiatives and investments in expansive infrastructure ventures encompassing highways, railways, airports, and public edifices.
Importance of Digitalisation
Digitalisation in cement manufacturing is crucial for several reasons:
- Enhanced efficiency: Digital tools streamline production processes, reducing waste and improving the precision of operations. This leads to higher output and better resource utilisation.
- Predictive maintenance: By leveraging AI and IoT, cement plants can predict equipment failures before they occur, minimising unplanned downtime and extending the lifespan of machinery.
- Energy optimisation: Digital technologies enable the monitoring and optimisation of energy consumption, leading to significant cost savings and a reduced carbon footprint.
This aligns with global sustainability goals and regulatory requirements.
Quality control: Advanced sensors and data analytics ensure consistent product quality by closely monitoring and adjusting the production parameters in real time.
Safety improvements: Automation and robotics reduce the need for human intervention in hazardous environments, enhancing worker safety and reducing the risk of accidents.
Competitive advantage: Companies that embrace digitalisation can respond more quickly to market changes, innovate faster, and provide better customer service, giving them a competitive edge in the industry.
Digital transformation is reshaping the cement industry by driving efficiency, enhancing product quality, and promoting sustainability. As the industry continues to evolve, the adoption of digital technologies will be essential for maintaining competitiveness and achieving long-term success.
Key technologies driving digitalisation
The digital transformation of the cement industry is powered by a suite of advanced technologies that enhance efficiency, improve product quality, and drive sustainability. Here are some of the key technologies making a significant impact:
IoT refers to a network of interconnected devices that communicate and exchange data in real time. In the cement industry, IoT applications are revolutionising operations by enabling real-time monitoring and control of production processes. Sensors embedded in equipment collect data on various parameters such as temperature, pressure, and vibration. This data is then transmitted to a central system where it is analysed to optimise performance. For instance, IoT-enabled predictive maintenance systems can detect anomalies and predict equipment failures before they occur, minimising downtime and reducing maintenance costs. Additionally, IoT helps in energy management by monitoring consumption patterns and identifying opportunities for energy savings.
AI and ML in process optimisation are pivotal in enhancing process optimisation in the cement industry. AI algorithms analyse vast amounts of data generated from production processes to identify patterns and insights that human operators might overlook. ML models continuously learn from this data, improving their accuracy and effectiveness over time. These technologies enable real-time adjustments to production parameters, ensuring optimal performance and product quality. For example, AI-driven systems can automatically adjust the
mix of raw materials to produce cement with consistent properties, reducing waste and improving efficiency. AI and ML also play a crucial role in predictive maintenance, forecasting potential issues based on historical data and preventing costly equipment failures.
Tushar Kulkarni, Head – Solutions, Innomotics India, says, “Adoption of artificial intelligence (AI) will significantly help cement plants in their efforts towards innovation, efficiency and sustainability goals through improved process optimisation and increased productivity.”
“The Innomotics Digi-Suite (AI-based) is positioned to support the cement industry in this endeavour. Built on microservices architecture, Digi-Suite offers flexible self-learning AI based solutions which can be customised or tailor-made in accordance with plant / customer requirements. It enables customers to implement their digitalisation strategies in a stepwise manner and scale it up to an entire plant or multiple plants. Through this platform, customers can monitor and manage processes centrally. This approach provides guidance for company-wide process standardisation, knowledge sharing and optimum utilisation of expert resources,” he adds.
Big Data analytics involves processing and analysing large volumes of data to extract meaningful insights. In the cement industry, Big Data analytics is used for predictive maintenance and strategic decision-making. By analysing data from various sources such as sensors, machinery logs, and production records, companies can predict equipment failures and schedule maintenance activities proactively. This approach minimises unplanned downtime and extends the lifespan of critical assets. Furthermore, Big Data analytics helps in optimising supply chain management, inventory control, and production planning by providing actionable insights into trends and patterns. Decision-makers can leverage these insights to make informed choices that enhance operational efficiency and competitiveness.
Arun Attri, Chief Information Officer, Wonder Cement, says, “The advantages of data integration are substantial. By leveraging integrated data,
we build a single source of truth, we can identify patterns, optimise processes, and implement strategic initiatives that drive overall business growth. This approach not only enhances operational efficiency but also strengthens our relationships with all stakeholders by providing a clear and consistent view of our operations.”
“By establishing a single source of truth, we ensure that all stakeholders, both internal and external, have access to consistent and accurate data. This unified data repository enhances visibility into our operations, improves decision-making, and enables comprehensive analyses. For internal stakeholders, such as our production, quality and maintenance teams, this means having reliable data to optimise processes and schedule maintenance effectively. For external stakeholders, including suppliers and customers, it ensures transparency and trust, as they can rely on the accuracy of the information provided,” he adds.
Cloud computing offers a scalable and flexible solution for data storage and access, playing a vital role in the digitalisation of the cement industry. By storing data in the cloud, companies can easily access and share information across different locations and departments. Cloud-based platforms facilitate real-time collaboration and data sharing, enabling seamless integration of various digital tools and systems. Additionally, cloud computing provides robust data security and backup solutions, ensuring that critical information is protected and can be recovered in case of data loss. The scalability of cloud services allows cement manufacturers to handle the increasing volume of data generated by IoT devices and other digital technologies, supporting their growth and innovation initiatives.
Digital twin technology
Digital twin technology involves creating a virtual replica of a physical asset, process, or system. This digital counterpart is continuously updated with real-time data from sensors and other sources, mirroring the physical entity’s performance, behaviour and condition. In the cement industry, digital twins
offer numerous benefits. They enable real-time monitoring and analysis, allowing operators to visualise and understand complex processes in detail. This enhanced visibility helps in optimising production, improving efficiency, and reducing downtime. Digital twins also facilitate predictive maintenance by simulating various scenarios and identifying potential issues before they occur, thereby extending the lifespan of equipment and minimising maintenance costs. Moreover, they support data-driven decision-making by providing comprehensive insights into operations, leading to better resource management and increased productivity.
Tarun Mishra, Founder and CEO, Covacsis, explains, “Different plant data reside within the walls of individual plants. Comparing micro economic performance across plants is impossible. Covacsis’ IPF is designed to aggregate multiple plant’s data at unified enterprise datalike (historian) which then further used for relative baselining and relative performance analysis across same and similar asset base or product or processes.”
“Data plays the most important role in any algorithm. Big data and fast data are only adding to the logistics performance of any algorithm and platform. Covacsis is a decade old and most mature platform in the world. Covacsis’ SaaS infrastructure is already handling more than 350 billion of cement process and operation data on a daily basis with a compounding daily growth rate of 1 per cent. This provides a significant advantage to Covacsis towards building algorithms and ensuring the value efficacy of these algorithms for the industry,” he elaborates.
The implementation of digital twins in cement plants involves several steps. First, detailed models of the plant’s equipment, processes, and systems are created using data from various sources such as sensors, historical records, and engineering specifications. These models are then integrated into a digital platform that continuously collects and analyses real-time data from the physical plant. For instance, a digital twin of a cement kiln can monitor temperature, pressure, and other critical parameters, allowing operators to optimise the combustion process and improve energy efficiency.
Similarly, digital twins of grinding mills can help in adjusting operational parameters to achieve optimal particle size distribution and improve cement quality. The integration of digital twins with other digital technologies such as IoT, AI and Big Data analytics enhances their capabilities, providing a comprehensive and dynamic view of the entire production process. As a result, cement plants can achieve significant improvements in operational efficiency, product quality and sustainability.
Automation in cement production
Automation plays a pivotal role in enhancing productivity within the cement industry by streamlining operations and reducing the reliance on manual labor. Automated systems and machinery can perform repetitive and complex tasks with higher precision and consistency than human workers. This leads to significant improvements in operational efficiency and throughput. For instance, automated material handling systems can manage the movement and storage of raw materials and finished products more effectively, minimising delays and reducing handling costs.
Automated process control systems enable real-time monitoring and adjustments of production parameters, ensuring optimal performance and reducing waste. Additionally, automation helps in maintaining consistent product quality by minimising human errors and variations in the manufacturing process. Overall, the integration of automation technologies results in faster production cycles, lower operational costs, and increased competitiveness in the market.
The introduction of automation in the cement industry has a profound impact on workforce skills and safety. As automation takes over routine and hazardous tasks, the demand for manual labour decreases, and the focus shifts to more technical and supervisory roles. Workers are required to develop new skills in operating and maintaining automated systems, as well as in data analysis and problem-solving. This shift necessitates continuous training and upskilling to ensure the workforce can effectively manage and leverage advanced technologies.
On the safety front, automation significantly enhances worker safety by reducing their exposure to dangerous environments and tasks. Automated systems can handle heavy lifting, high-temperature processes, and exposure to harmful dust and chemicals, thereby minimising the risk of accidents and occupational health issues. As a result, automation not only boosts productivity but also contributes to a safer and more skilled workforce, fostering a more sustainable and resilient industry.
Energy efficiency and sustainability
Digital tools are revolutionising the way energy consumption is monitored and optimised in the cement industry. Advanced sensors and IoT devices continuously collect data on energy usage across different stages of the manufacturing process. This real-time data is analysed using AI and machine learning algorithms to identify patterns, inefficiencies, and opportunities for energy savings. Energy management systems (EMS) integrate these digital tools to provide a comprehensive overview of energy consumption, allowing operators to make informed decisions to reduce energy waste. For instance, predictive analytics can forecast energy demands and optimise the operation of high-energy equipment, such as kilns and grinders, to align with periods of lower energy costs. Additionally, automated control systems can adjust operational parameters to maintain optimal energy efficiency, thereby reducing the overall energy footprint of the plant.
McKinsey & Company for the cement industry analyse that pursuing digitisation and sustainability levers are key to significantly boosting productivity and efficiency of a typical cement plant. The result is a margin gain of $4 to $9 per tonne of cement, which would shift a traditional plant to the top quartile of the cost curve for plants with similar technologies.
Digital technologies are also instrumental in driving sustainable practices within the cement industry. By providing precise control over production processes, digital tools help in minimising raw material wastage and reducing emissions. For example, advanced process control (APC) systems optimise the combustion process in kilns, leading to more efficient fuel use and lower carbon dioxide emissions. Digital twins, which create virtual replicas of physical assets, enable detailed simulations and scenario analyses, allowing companies to explore and implement more sustainable production methods. Furthermore, the integration of renewable energy sources,
such as solar and wind power, is facilitated by digital technologies that manage and balance energy loads effectively.
Digital platforms also support the implementation of circular economy practices, such as the use of alternative fuels and raw materials, by tracking and optimising their utilisation throughout the production cycle. Overall, digital technologies empower the cement industry to achieve significant advancements in energy efficiency and sustainability, contributing to environmental conservation and compliance with global sustainability standards.
Future of digitalisation
The cement industry is on the brink of a significant transformation driven by emerging technologies. Innovations such as artificial intelligence (AI), machine learning (ML), advanced robotics, and blockchain are poised to revolutionise various aspects of cement production and supply chain management. AI and ML will enable more sophisticated predictive maintenance and process optimisation, reducing downtime and increasing efficiency. Advanced robotics will automate more complex and hazardous tasks, further enhancing productivity and worker safety. Blockchain technology offers potential benefits in enhancing transparency and traceability in the supply chain, ensuring the integrity of product quality and compliance with environmental regulations. These emerging technologies will collectively contribute to a more efficient, reliable, and sustainable cement industry.
Smart cement plants represent the future of the industry, where digital technologies are fully integrated to create highly automated and interconnected production environments. In these plants, IoT devices, digital twins and AI-driven systems will work together seamlessly to monitor, control and optimise every aspect of the manufacturing process. Real-time data from sensors will feed into advanced analytics platforms, enabling instant adjustments to maintain optimal performance. Digital twins will allow operators to simulate and test changes in a virtual environment before implementing them in the physical plant, minimising risks and enhancing decision-making. Furthermore, smart cement plants will incorporate renewable energy sources and energy storage solutions, supported by intelligent energy management systems that ensure efficient and sustainable operations.
Over the next decade, the digital transformation of the cement industry is expected to accelerate, driven by continuous advancements in technology and increasing demands for sustainability. We can anticipate widespread adoption of AI and ML for real-time process optimisation and predictive maintenance, leading to significant reductions in operational costs and emissions. The use of digital twins will become standard practice, enabling more precise and flexible production planning and execution.
Enhanced connectivity and data sharing across the supply chain will improve efficiency, transparency, and collaboration among stakeholders. Additionally, the integration of renewable energy and advanced energy storage solutions will become more prevalent, supported by digital platforms that optimise energy usage and reduce environmental impact. As the industry embraces these digital innovations, we will see a new era of smart, sustainable, and highly efficient cement manufacturing, positioning it to meet the challenges and opportunities of the future.
Conclusion
The digital transformation of the cement industry is poised to revolutionise traditional manufacturing processes, driving significant advancements in efficiency, sustainability, and competitiveness. Emerging technologies such as IoT, AI, ML advanced robotics, and blockchain are not only optimising energy consumption and improving operational efficiency but are also paving the way for more sustainable practices. The evolution towards smart cement plants, where digital tools are fully integrated, is set to redefine production environments with enhanced automation, real-time monitoring and advanced analytics.
Over the next decade, we can expect these technologies to become standard practice, leading to substantial reductions in costs and emissions, improved supply chain transparency, and greater adoption of renewable energy sources. As the industry embraces digitalisation, it will be better equipped to meet future challenges and seize new opportunities, ultimately contributing to a more sustainable and resilient
global economy.
– Kanika Mathur
Concrete
Advantages of data integration are substantial
Published
4 months agoon
August 23, 2024By
RoshnaArun Attri, Chief Information Officer, Wonder Cement, discusses the digital transformation and advanced technologies used to enhance operational efficiency, sustainability and cybersecurity in their cement manufacturing processes.
How has the implementation of IT initiatives transformed your operations and processes in the cement industry?
We operate under the digital vision: To leverage digital to accelerate growth, build relationships and enhance consumer experience.
Our digital transformation initiatives have profoundly reshaped operations and processes at Wonder Cement. By integrating advanced technologies such as IoT, cloud computing and constructing a data lake house for data consolidation as a single source of truth, we have enabled seamless information flow between applications and developed real-time analytics. These advancements have streamlined our production processes, enhanced operational efficiency, and improved decision-making. Additionally, predictive analytics allows us to anticipate market trends and customer needs more accurately.
Can you discuss how your organisation is adopting Industry 4.0 technologies and the benefits you are experiencing?
Embracing Industry 4.0 technologies is truly transforming our operations and improving reliability. Here are the key benefits we are experiencing:
- Real-time monitoring: IoT devices provide real-time data on equipment performance, enabling predictive maintenance and reducing downtime.
- Process optimisation: AI and machine learning algorithms enhance process optimisation,
leading to increased efficiency and reduced operational costs. - Higher productivity: Improved monitoring and optimisation result in higher productivity and better product quality.
- Enhanced sustainability: Better resource utilisation contributes to enhanced sustainability.
What specific automation technologies have you implemented, and how have they improved efficiency and productivity in your cement plants?
Automation technologies have revolutionised efficiency and productivity at our cement plants. Automated quality control systems ensure consistent product quality by continuously monitoring and adjusting production parameters. Robotic process automation (RPA) in administrative functions like inventory management and order processing has drastically reduced manual errors and boosted operational efficiency. These advancements enable us to uphold high standards of precision and reliability, optimise resource utilisation and minimise wastage.
How are predictive analytics and maintenance technologies being utilised in your operations to minimise downtime and optimise maintenance schedules?
Predictive analytics and maintenance technologies are pivotal in minimising downtime and optimising maintenance schedules at Wonder Cement. By analysing historical data and real-time sensor inputs, we proactively predict and address potential equipment failures. This approach has drastically reduced unplanned downtime, enhanced equipment reliability, and extended machinery lifespan. Our maintenance teams use these insights to schedule activities during planned shutdowns, ensuring minimal production disruption. This proactive strategy has led to substantial cost savings and significantly boosted overall plant efficiency.
What are the challenges and advantages of integrating data across various systems in your cement manufacturing process?
Integrating data across various systems in our cement manufacturing process presents both challenges and advantages. One of the primary challenges is ensuring data consistency and accuracy across different platforms. To address this, we have implemented robust data integration and validation frameworks that facilitate seamless data flow and synchronisation.
The advantages of data integration are substantial. By leveraging integrated data, we build a single source of truth, we can identify patterns, optimise processes, and implement strategic initiatives that drive overall business growth. This approach not only enhances operational efficiency but also strengthens our relationships with all stakeholders by providing a clear and consistent view of our operations.
By establishing a single source of truth, we ensure that all stakeholders, both internal and external, have access to consistent and accurate data. This unified data repository enhances visibility into our operations, improves decision-making, and enables comprehensive analyses. For internal stakeholders, such as our production, quality and maintenance teams, this means having reliable data to optimise processes and schedule maintenance effectively. For external stakeholders, including suppliers and customers, it ensures transparency and trust, as they can rely on the accuracy of the information provided.
How is digitalisation contributing to sustainability efforts and reducing the environmental impact of your cement production?
IT initiatives play a pivotal role in supporting our sustainability efforts and reducing the environmental impact of cement production at Wonder Cement. One of the key contributions of IT is the optimisation of energy consumption. Through advanced energy management systems, we continuously monitor and analyse energy usage across our operations. This allows us to identify areas of inefficiency and implement measures to reduce energy consumption, such as adjusting process parameters and utilising energy-efficient equipment.
Additionally, IT enables us to track and manage emissions more effectively. By integrating emission monitoring systems with our IT infrastructure, we can continuously measure and analyse emission levels, ensuring compliance with environmental regulations and identifying opportunities for reduction. For instance, real-time data on CO2 emissions allows us to adjust our production processes to minimise the carbon footprint.
IT initiatives also facilitate the implementation of circular economy practices. Through sophisticated waste management systems, we can monitor and optimise the use of alternative fuels and raw materials, reducing our reliance on traditional resources and minimising waste generation.
With the increasing digitisation of operations, what steps are you taking to ensure cybersecurity and protect sensitive data?
With the increasing digitisation of operations, ensuring cybersecurity and protecting sensitive data is paramount at Wonder Cement. We have implemented advanced technologies such as artificial intelligence and machine learning (AI/ML) for threat detection and response, and Secure Access Service Edge (SASE) to provide secure and efficient network access. Additionally, our Security Operations Centre (SOC) continuously monitors our digital infrastructure, utilising AI/ML to identify and mitigate potential threats in real-time. Comprehensive cybersecurity measures, including firewalls, intrusion detection systems, and regular security audits, further safeguard our systems. We also conduct regular training sessions for our employees to raise awareness about cybersecurity best practices and potential threats. By prioritising cybersecurity, we ensure the confidentiality, integrity, and availability of our critical data and systems, staying ahead of emerging cyber threats.
What future IT trends do you foresee having the most significant impact on the cement industry, and how is your organisation preparing to embrace these trends?
Looking ahead, we foresee several IT trends that will significantly impact the cement industry. These include the further integration of AI and machine learning for advanced process optimisation, the adoption of blockchain technology for transparent and secure supply chain management, and the expansion of IoT applications for enhanced monitoring and control. Additionally, the use of drones for site inspections, computer vision for quality control, generative AI for innovative design solutions, and robotics and RPA for automating repetitive tasks will bring substantial benefits. At Wonder Cement, we are actively preparing to embrace these trends by investing in research and development, collaborating with technology partners, and continuously upgrading our IT infrastructure. Our proactive approach ensures that we remain at the forefront of technological advancements, driving innovation and maintaining our competitive edge.
– Kanika Mathur
At the World Cement Association’s annual conference the WCA Director, Emir Adiguzel addressed the global cement industry to outline the challenges and opportunities facing the global cement industry.
The conference held in Nanjing, had industry leaders, innovators and stakeholders in attendance to discuss the future of cement production and sustainability. The WCAA director emphasised on the cement industry’s stern commitment to sustainability; spoke about the global cement demand and market dynamics, projecting a period of stagnation from 2024-2030 with growth expected only in the Middle east, India and Africa; about the challenges and opportunities in carbon capture technology hat show promise but will need further development and substantial investment as well as about the strategic initiatives and collaboration within the industry in improving sustainability and operational performance.
Adiguzel concluded his address by highlighting the crucial point where the global cement industry stands by saying “Collaboration within the World Cement Association is essential for sharing knowledge and aligning on long-term objectives. Ensuring the industry’s resilience and adaptation to evolving market dynamics is crucial for the survival of independent cement producers”.