Connect with us

Product development

Refractories Selection for Cement Industry

Published

on

Shares

The appropriate refractory selection for the stationary section improves the kiln uptime, which, in turn, has favourable impact on the refractory life as well as operating efficiency, says I N CHAKRABORTY.

Refractory selection is the most important step for the maximisation of its performance. The major deciding factor for refractory selection is the working or operating environment where the refractory would be used.

The working environment, in general, is defined by the following parameters:

  • Operating temperature
  • Chemical condition
  • Chemical nature of solid/ liquid, i.e., acidic or basic, in contact with refractory
  • Characteristic of gaseous environment
  • Thermal shock
  • Mechanical stressv
  • Abrasion

All the aforementioned parameters are not relevant for each industrial application. Identification of critical parameters, for a given working environment, is vital for refractory life maximisation at optimal cost. Once the critical operating parameters are identified, the refractory should be so selected that it can withstand the operating conditions for the stipulated life span. Operating Conditions
For the cement industry, the operating conditions for various parts of the kiln system can be deduced Ref. Figure 1. The concentration of raw meal constituents and the new phases formed therefrom, at different stages of the processing, are depicted by the width of the coloured bands. The X and Y axes indicate the dwelling time of the raw meal and temperature at each stage of the processing, respectively. It is evident that for a ‘theoretical’ raw meal, i.e., a mix of limestone, quartz, clay and some lateritic material, the operating condition in the cement kiln is not very severe, except for the burning zone, where the temperature is as high as 1,4500C and the liquid content of the feed material would be in the range of 25-27 per cent.
By the time the raw mix attains 9000C, the limestone present in raw meal is decomposed into CaO, clay is dehydrated and quartz undergoes polymorphic transformation. Simultaneously, formation of some of the cement constituents, e.g., C2S and C3A, commences. None of these reactions has any adverse impact on the refractory. As the temperature rises to ~1,4000C, the liquid phase forms. At the maximum operating temperature, which is ~1,450 0C, the liquid phase concentration is 25-27 per cent. On cooling, C3S and C4AF precipitate out from the melt. As the clinker cools down, the reactivity of the mass reduces; i.e., the refractory is not chemically affected. However, the clinker, on cooling, becomes abrasive and has a tendency to erode the refractory. The situation worsens in the modern pre-heater – pre-calciner kilns, where the clinker is dustier. The cooler refractories which include cooler take-off duct, bull nose and tertiary air ducts are impinged upon by dust-laden gas.
Thus, except for the burning zone, the operating condition of cement kiln ‘apparently’ is of moderate severity, at least from the chemical attack point of view. The temperature in the non-burning zone part of the kiln system is not high enough for reaction between the aluminous refractory and lime-bearing raw meal/clinker. Chemically "non-compatible", i.e., alumino-silicate refractories in basic environment, hence, suffice for the majority part of the kiln system Ref. Figure 2.
But in reality the situation does not remain so simple owing to volatile cycle in the cement kiln and its accessories. Volatile Cycle
The reality is raw meal and fuel bring in potassium, sodium, sulphur and chlorine in the cement rotary kiln system. These constituents combine to form a varied range of alkali compounds. The nature of compounds formed, i.e., the ones available in the kiln environment, is determined by the alkali sulphur ratio (ASR), which is expressed as per the following relationship. ASR is calculated based on the molar concentration of the constituents in the kiln gaseous environment,


When,Q = 1 KCl and K2SO4 in
the environment
Q > 1, KCl and K2SO4 as
well as free SO3
Q < 1, KCl and K2SO4 as
well as free K2O
The situation worsens when alternate fuel is used, since their alkali and chlorine concentrations are significantly higher compared to the conventional ones. Table I reports the melting point of the compounds which form in the kiln environment. Since the melting points of the newly formed alkali compounds are significantly lower than the maximum operating temperature of the kiln, part of these compounds partially vapourise in the kiln and travel along with the flue gas towards the kiln inlet areas, whereas the rest escape the kiln system by combining with the clinker. The alkali bearing compounds in the flue gas get deposited on the incoming raw meal at the corresponding freezing point of these alkali compounds.
The alkali-enriched raw materials travel back in the kiln and the aforementioned process gets repeated. Since the chloride compounds have lower melting point than the sulphates, they have the ability to travel further back in the kiln system, compared to the sulphur-bearing compounds. Owing to this cycling process, the kiln environment becomes richer in alkalis, compared to their concentrations in the raw meal. The volatile constituents usually get enriched by following factors:
R2O: 5 times
SO3 2-: 3-5 times, and
Cl: 80-100 times
Owing to the self-enrichment phenomenon, raw meal chemistry does not indicate the true chemical environment of the kiln. Build-Up Formation
While these volatile compounds travel with the flue gas and interact with the incoming raw meal, they either get deposited on the incoming raw meal or on the refractory surface. Since the deposited alkali compounds are in semi-fused state at this temperature, Incoming raw meal sticks to the alkali-coated refractory surface. This phenomenon is usually known as "build-up" formation. Build-up formation occurs where the temperatures, as expected, are in the range of the freezing points of the alkali compounds (Table I). The kiln inlet, smoke chamber and lower riser ducts are the most vulnerable areas for build-up formation since the operating temperatures of these regions fall in the range of melting point of the alkali compounds. It is, hence, evident that the build-up problem of the kiln inlet region originates from the cement manufacturing process, not from the refractory. Figure 2: Typical Refractory Choice for
Different Parts of the Rotary Kiln System.

The-build up hinders the flow of raw meal and the production often needs to be stopped for their dislodgement, which is either by thermal or mechanical shock. Both these methods of build-up dislodge-ment put stress on the refractories and may cause premature failure. Solution of Build-Up through Refractory
There exists a solution for the build-up problem through refractory. The build-up can be minimised, if not eliminated altogether, by using a SiC-based castable, wherever such problem exists. The SiC content of the formulation is governed by the exact nature of the kiln environment. While designing the refractory formulation, the stability of SiC in a chlorine-rich environment must be considered. The basic mechanism for build-up resistance is by virtue of vitreous phase formation on the refractory surface, via following reactions:

  • SiC (s) + 3/2O2 (g) = SiO2 (s) + CO (g) (l)
  • SiO2 (s) + Na2CO3 (l) = Na2SiO3 (Glass) + CO2 (g), and
  • SiO2 (s) + Na2SO4 (l) + 2C (s) + 3/2O2 (g) = Na2SiO3 (Glass) + SO2 (g) + 2CO2 (g)

Figure 3: Abrasion Resistances of Some of the Commercial
Products Measured by ASTM C 704.

Since the glassy surface is slimy, the adherence of build-up on the refractory surface is weak and hence, falls off under its own weight or by light mechanical shock. The elimination of build-up, in SiC-based formulations, is by an unconventional process, i.e., by allowing the refractory to react with the environmental constituents. Since the build-up adherence is a physical phenomenon, we recommend SiC-based castable instead of bricks, as it offers lesser foothold compared to bricks owing to lesser number of joints. Alkali Bursting
No refractory is impervious and hence, alkali compounds, present in the kiln environment, not only travel to the cooler part of the kiln, but also travel to the cold face of the refractory through the inherent pores present in them. While travelling, the alkali compounds can interact with the refractories. The resultant of the alkali-refractory interactions are as under:
Chemical reaction with refractory, i.e., formation of new compounds, and/or
Physical interaction – i.e., alkali impregnation, which leads to densification of brick texture resulting in loss of structural flexibility. This leads to refractory failure by thermal spalling.
The refractory cracks vigorously, which is normally termed as ‘alkali bursting’. Alkali bursting occurs due to formation of following feldspathic compounds by reaction between alkali and alumino-silicate refractories. It is evident that formation of all these feldspathic compounds is expansive in nature, which induces stress in the refractory, leading to their cracking.
Kaliopholite (KAS2): (V = + 29%)
– Alumina {(K/Na)2A}: (V = + 29%)
Kalisite {(K/Na)AS2}: (V = + 17%)
Leucite (KAS4): (V = + 10%)
Orthoclase (KAS6): (V = + 6%)
Both the phenomena, i.e., physical as well as chemical attack of alumino-silicate refractories by alkali, can be overcome, if SiC is incorporated in the refractory formulation. It is a common knowledge now that SiC-bearing refractories, when used in alkali environment, see a glassy layer forming on their surface, which acts like an impervious layer and prevents alkali penetration into the bulk of the refractory. Refractories for Kiln Downstream
In the downstream, the clinker becomes more abrasive as it becomes cooler and volatile components may still be in the atmosphere. Temperature fluctuation, i.e., thermal shock, always remains an issue in the tip-casting area. For areas with relatively higher temperature, i.e., the locations where operating temperature is higher than the melting point of the alkali compounds, alkali resistance in refractories is desirable. In short, refractories, in all the areas of downstream, should be resistant to abrasion. For some locations, additional features like thermal shock as well as alkali resistance would be required. The areas which require only abrasion resistance, e.g., tertiary air ducts, aluminous refractories with high resistance to abrasion are recommended. The abrasion resistances for some of the commercial products are illustrated in Figure 3.
Prior to the development of abrasion resistance castable, 90% Alumina Low Cement Castable (LCC) has been the most abrasion resistance refractory. The data (Figure 5) reveals that abrasion resistance of this new abrasion resistant castable is over three times better than that of 90% Alumina LCC. Field trial results indicate significant improvement in performance while using the newer formulation in high abrasion areas of cement kiln. Refractories for Burning and Transition Zones
The refractory selection process in the kiln burning and transition zones differ significantly compared to the static part of the kiln. Cement kiln burning zone bricks wear due to the combined effect of chemical, thermal and mechanical factors. Chemical Factor – Raw Meal
Cement raw meal compositions are normally defined by certain moduli, which are primarily ratios of various chemical constituents present in the raw meal.
Lime Saturation Factor (LSF) = CaO / (2.8SiO2 + 1.2Al2O3 + 0.65Fe2O3). The LSF controls the ratio of C3S to C2S in the clinker. A clinker with higher LSF implies C3S content of clinker is higher.
Silica Ratio {(SR) = SiO2 / (Al2O3 + Fe2O3)}, indicates the amount of liquid phase in the clinker; lower the SR, higher is the liquid content during the burning process. When SR exceeds 3, liquid phase content is low and burning temperature becomes high, i.e., high kiln load, which has adverse effect on the refractory.
When LSF and SR are high, or quantity of MgO and alkali are low, burning becomes more difficult, i.e., refractories suffer.
Alumina Ratio (AR) = Al2O3 / Fe2O3, it characterises the composition of the melt; low AR implies low viscosity of clinker liquid phase. When AR < 1.5, melt viscosity decreases, and the higher is the possibility of infiltration of liquid in the refractory. If AR exceeds 2.5, e. g. for white cement, melt viscosity increases and the burning condition becomes difficult.
It is, hence, apparent that raw meal chemistry has a significant role in determining quantity as well as quality of liquid, which, in turn, determines the firing condition and the ultimate refractory performance. Thermal Factor
Figure 4 illustrates the temperature of the burning zone refractory during the kiln rotation. The kiln lining is permanently subjected to thermal stresses due to differences in the temperature under the clinker bed and the open atmosphere. During each rotation, i.e., at a frequency of two-four times per minute, the refractory sees a temperature variation of over 600 ?C.
Thermal shock, thus, is an inherent part of rotary kiln operation. At the kiln inlet, temperature changes can even be higher due to the secondary air from the cooler.
Thermal shock resistance of bricks is increased by
??igh mechanical resistance
??igh thermal conductivity
??ow elasticity modulus
??ow thermal expansion coefficient
Thermal shock resistance, which can be approximated by the ratio of CCS and shear modulus, increases with the decrease of elastic modulus. When the aforementioned ratio exceeds 5×10-3, thermal shock resistance is expected to be good. The bricks for transition and burning zones should be so selected that they meet these criteria. Mechanical Forces
As the kiln shell gets older, ovality and kiln shell distortion becomes the major cause of concern and has adverse effect on refractory life. The kiln ovality is defined by the following equation:
Ovality () = (4/3) x D2 x s x 100 (%), where
s = Greatest deflection value from the shell test and
D = Kiln diameter
Increase of kiln ovality, as expected, increases the stress on the refractory lining. In addition to kiln shell ovality, the refractories are stressed during each rotation (Figure 5). The major mechanical stress is generated in the kiln tyre zones due to rotation of the kiln shell and its elastic flexing, i. e., squeezing.
Stress on the refractories in kiln, thus, originates from thermal shock, kiln shell ovality and thermal expansion. Bricks with higher elasticity, i.e., low elastic modulus, resist the mechanical stress better. Coating Formation
The formation of coating on the refractory lining is attributable to formation of highly viscous calcium ferrite and calcium aluminate compounds followed by their solidification on the refractory surface.
The coating, thus, forms due to interaction between the liquid formed in the raw meal during burning and brick constituents. A stable coating in the burning zone protects the refractories from thermal shock as well as prevents chemical interaction with the raw meal at elevated temperature. Usually the coating in the transition zone is not very stable, i.e., it falls off frequently. As a fallout of the same, in general, the average refractory surface temperature in the transition zone is higher than that of the burning zone. Also, thermal stress is the highest in the uncoated transition zones. In general, the refractories undergo highest thermal shock during operation interruptions and hence, it must be minimised.
Formation of stable coating on the brick, thus, is highly desirable. For the formation of stable coating, various modulii defined earlier should be optimised so that the liquid formed is viscous and the burning condition is not hard. If the liquid formed is low in its content as well as in viscosity, adherence on the brick surface, i.e., coating formation, is poor.
Additionally, when the liquid viscosity is low, formed liquid penetrates the refractory pores, causing textural densification leading to spalling. In the absence of coating, bricks wear out due to various reasons, which of course depend on the brick quality. For optimum operation LSF, SR and AR should be in the range of ~ 0.96, 2.2-2.6 and 1.5-2.5, respectively. These parameters ensure ease of burning, optimised liquid quantity with appropriate viscosity for stable coating formation Bricks for Burning and Transition Zones
From the chemistry point of view, magnesite bricks are ideally suited for the cement kiln burning and transition zones. Magnesite bricks, however, are too vulnerable owing to their poor spalling resistance arising out of their high expansion coefficient. As evident from the earlier section, the stress absorbability is the primary selection criterion for both transition as well as burning zones. The selected bricks, hence, should be highly elastic. The desired level of elasticity cannot be provided by magnesite.
Appropriately designed mag-chrome bricks are ideal, though they are vulnerable to frequent change in kiln redox condition, for rotary kiln burning zone applications, since the coating adherence on such bricks is excellent. The environmental concern, owing to the formation of hexavalent chrome, especially in the alkali-rich environment following the reaction, has caused their decline in the cement kiln application.
MgO. Cr2O3 + 2 Na / K = (Na / K)2(CrO4)
Mag-Al bricks or zirconia containing magnesia bricks yield low elastic modulus i.e., high structural flexibility, and hence offer excellent resistance to mechanical stress. In general, Mag-Al bricks show poor coating adherence capability. In the absence of coating, they are chemically vulnerable owing to the formation of C12A7, when the temperature exceeds 1,350?C. Better chemical compatibility, however, is achieved by increasing the magnesia content to the level of ~ 95 per cent and/or by basing the product on sinters of natural magnesite of specific grade.
Magnesia-Hercynite (FeO.Al2O3) bricks, which show equally high tendency for coating formation as Mag-Chrome bricks, also are less sensitive to thermal as well as mechanical stresses. These bricks are a good balance between environmental concern and performance.
The exact selection of burning and transition zone bricks is based on the condition prevailing in the specific kiln.
Generic alumino-silicate refractories suffice in majority of locations, except for upper as well as lower transition zones and burning zone. Such refractories are a definite choice for upper cyclones since they are not exposed to high abrasion or alkali attack. Lower cyclones and kiln inlet areas, however, may require special refractories, e.g., SiC-based formulations or its derivatives, when alkali concentration in the kiln atmosphere is high. Downstream of burning zone mainly requires refractories which resist abrasion as well as thermal shock. Alkali resistance sometimes is desirable for kiln downstream applications. For areas with only abrasion, e.g., in tertiary air ducts, abrasion resistance castables are recommended. For rest of the downstream locations, e. g., cooler bull nose, cooler bench and cooler take-off duct, either abrasion resistant or SiC-based castable is recommended, depending on the exact operating conditions.
Burning and transition zone refractory selection is primarily determined by raw meal characteristic and exact kiln operation condition. The choice, however, is limited to non-chrome spinel bricks. About the authorDr. Indra N. Chakraborty is a ceramic engineer from BHU. He holds a doctorate from Illinois University has done extensive work in refractories. He is presently President R&D and QPC Calderys India Refractories Limited.

Table I The Melting Points of the Volatile Compounds Formed in the Rotary Kiln System.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

Power Build’s Core Gear Series

Published

on

By

Shares

A deep dive into Core Gear Series of products M, C, F and K, by Power Build, and how they represent precision in motion.

At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. Power Build answers this need with its flagship geared motor series: M, C, F and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.

Series M – Helical Inline Geared Motors
Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.

Series C – Right Angled Heli-Worm Geared Motors
Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.

Series F – Parallel Shaft Mounted Geared Motors
Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.

Series K – Right Angle Helical Bevel Geared Motors
For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining and material handling. Its flexibility in mounting and broad motor options offer engineers the freedom in design and reliability in execution.
Together, these four series reflect Power Build’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design and field-tested reliability. Whether the requirement is speed control, torque multiplication or space efficiency, Radicon’s Series M, C, F and K stand as trusted powerhouses for global industries.

http://www.powerbuild.in
Call: +919727719344

Continue Reading

Economy & Market

Conveyor belts are a vital link in the supply chain

Published

on

By

Shares



Kamlesh Jain, Managing Director, Elastocon, discusses how the brand delivers high-performance, customised conveyor belt solutions for demanding industries like cement, mining, and logistics, while embracing innovation, automation, and sustainability.

In today’s rapidly evolving industrial landscape, efficient material handling isn’t just a necessity—it’s a competitive advantage. As industries such as mining, cement, steel and logistics push for higher productivity, automation, and sustainability, the humble conveyor belt has taken on a mission-critical role. In this exclusive interview, Kamlesh Jain, Managing Director, Elastocon, discusses how the company is innovating for tougher terrains, smarter systems and a greener tomorrow.

Brief us about your company – in terms of its offerings, manufacturing facilities, and the key end-user industries it serves.
Elastocon, a flagship brand of the Royal Group, is a trusted name in the conveyor belt manufacturing industry. Under the brand name ELASTOCON, the company produces both open-end and endless belts, offering tailor-made solutions to some of the most demanding sectors such as cement, steel, power, mining, fertiliser, and logistics. Every belt is meticulously engineered—from fabric selection to material composition—to ensure optimal performance in tough working conditions. With advanced manufacturing facilities and strict quality protocols, Elastocon continues to deliver high-performance conveyor solutions designed for durability, safety, and efficiency.

How is the group addressing the needs for efficient material handling?
Efficient material handling is the backbone of any industrial operation. At Elastocon, our engineering philosophy revolves around creating belts that deliver consistent performance, long operational life, and minimal maintenance. We focus on key performance parameters such as tensile strength, abrasion resistance, tear strength, and low elongation at working tension. Our belts are designed to offer superior bonding between plies and covers, which directly impacts their life and reliability. We also support clients
with maintenance manuals and technical advice, helping them improve their system’s productivity and reduce downtime.

How critical are conveyor belts in ensuring seamless material handling?
Conveyor belts are a vital link in the supply chain across industries. In sectors like mining, cement, steel, and logistics, they facilitate the efficient movement of materials and help maintain uninterrupted production flows. At Elastocon, we recognise the crucial role of belts in minimising breakdowns and increasing plant uptime. Our belts are built to endure abrasive, high-temperature, or high-load environments. We also advocate proper system maintenance, including correct belt storage, jointing, roller alignment, and idler checks, to ensure smooth and centered belt movement, reducing operational interruptions.

What are the key market and demand drivers for the conveyor belt industry?
The growth of the conveyor belt industry is closely tied to infrastructure development, increased automation, and the push for higher operational efficiency. As industries strive to reduce labor dependency and improve productivity, there is a growing demand for advanced material handling systems. Customers today seek not just reliability, but also cost-effectiveness and technical superiority in the belts they choose. Enhanced product aesthetics and innovation in design are also becoming significant differentiators. These trends are pushing manufacturers to evolve continuously, and Elastocon is leading the way with customer-centric product development.

How does Elastocon address the diverse and evolving requirements of these sectors?
Our strength lies in offering a broad and technically advanced product portfolio that serves various industries. For general-purpose applications, our M24 and DINX/W grade belts offer excellent abrasion resistance, especially for RMHS and cement plants. For high-temperature operations, we provide HR and SHR T2 grade belts, as well as our flagship PYROCON and PYROKING belts, which can withstand extreme heat—up to 250°C continuous and even 400°C peak—thanks to advanced EPM polymers.
We also cater to sectors with specialised needs. For fire-prone environments like underground mining, we offer fire-resistant belts certified to IS 1891 Part V, ISO 340, and MSHA standards. Our OR-grade belts are designed for oil and chemical resistance, making them ideal for fertiliser and chemical industries. In high-moisture applications like food and agriculture, our MR-grade belts ensure optimal performance. This diverse range enables us to meet customer-specific challenges with precision and efficiency.

What core advantages does Elastocon offer that differentiate it from competitors?
Elastocon stands out due to its deep commitment to quality, innovation, and customer satisfaction. Every belt is customised to the client’s requirements, supported by a strong R&D foundation that keeps us aligned with global standards and trends. Our customer support doesn’t end at product delivery—we provide ongoing technical assistance and after-sales service that help clients maximise the value of their investments. Moreover, our focus on compliance and certifications ensures our belts meet stringent national and international safety and performance standards, giving customers added confidence.

How is Elastocon gearing up to meet its customers’ evolving needs?
We are conscious of the shift towards greener and smarter manufacturing practices. Elastocon is embracing sustainability by incorporating eco-friendly materials and energy-efficient manufacturing techniques. In parallel, we are developing belts that seamlessly integrate with automated systems and smart industrial platforms. Our vision is to make our products not just high-performing but also future-ready—aligned with global sustainability goals and compatible with emerging technologies in industrial automation and predictive maintenance.

What trends do you foresee shaping the future of the conveyor belt industry?
The conveyor belt industry is undergoing a significant transformation. As Industry 4.0 principles gain traction, we expect to see widespread adoption of smart belts equipped with sensors for real-time monitoring, diagnostics, and predictive maintenance. The demand for recyclable materials and sustainable designs will continue to grow. Furthermore, industry-specific customisation will increasingly replace standardisation, and belts will be expected to do more than just transport material—they will be integrated into intelligent production systems. Elastocon is already investing in these future-focused areas to stay ahead of the curve.

Continue Reading

Economy & Market

Impactful Branding

Published

on

By

Shares

Advertising or branding is never about driving sales. It’s about creating brand awareness and recall. It’s about conveying the core values of your brand to your consumers. In this context, why is branding important for cement companies? As far as the customers are concerned cement is simply cement. It is precisely for this reason that branding, marketing and advertising of cement becomes crucial. Since the customer is unable to differentiate between the shades of grey, the onus of creating this awareness is carried by the brands. That explains the heavy marketing budgets, celebrity-centric commercials, emotion-invoking taglines and campaigns enunciating the many benefits of their offerings.
Marketing strategies of cement companies have undergone gradual transformation owing to the change in consumer behaviour. While TV commercials are high on humour and emotions to establish a fast connect with the customer, social media campaigns are focussed more on capturing the consumer’s attention in an over-crowded virtual world. Branding for cement companies has become a holistic growth strategy with quantifiable results. This has made brands opt for a mix package of traditional and new-age tools, such as social media. However, the hero of every marketing communication is the message, which encapsulates the unique selling points of the product. That after all is crux of the matter here.
While cement companies are effectively using marketing tools to reach out to the consumers, they need to strengthen the four Cs of the branding process – Consumer, Cost, Communication and Convenience. Putting up the right message, at the right time and at the right place for the right kind of customer demographic is of utmost importance in the long run. It is precisely for this reason that regional players are likely to have an upper hand as they rely on local language and cultural references to drive home the point. But modern marketing and branding domain is exponentially growing and it would be an interesting exercise to tabulate and analyse its impact on branding for cement.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds