Technology
Fly ash | From Trash to Cash
Published
9 years agoon
By
admin
Many civil engineers are attracted to fly ash today, mostly due to commercial considerations. However, if it is looked upon as a performance improver, fly ash can solve many problems.
Fly ash is a by-product obtained while generating electrical power using coal as a fuel. For the last few decades, the demand for electricity has been increasing continually due to growing population and new industries being launched across the world.
During the year 2014-15; the total generation of fly ash has been 184.14 Million Tonnes out of which 102.54 Million tonnes is used, i.e.about 55.69 per cent of generated fly ash. (Information sourced from Central Electricity Authority, Govt. of India) But since fly ash contains a lot of heavy metals, its production causes problems to the environment. Because of this reason, it has become necessary to invent some newer aspects for utilising fly ash, rather than stick to the conventional ways. Fly ash disposal is a serious environmental concern due to its hazardous properties, impact on agriculture and long-term risks to both ecosystems and human beings. Fly ash is a coal-combustion product, composed of the fine particles that are driven out of the boiler with the flue gases. Ash that falls in the bottom of the boiler is called bottom ash. In modern coal-fired power plants, fly ash is generally captured by electrostatic precipitators or other particle filtration equipment before the flue gases reach the chimneys. Together with bottom ash removed from the bottom of the boiler, it is known as coal ash.
Depending upon the source and makeup of the coal being burned, the chemical composition of fly ash will vary considerably; but in general, all fly ash includes substantial amounts of silicon dioxide (SiO2) – both amorphous and crystalline, aluminium oxide (Al2O3) and calcium oxide (CaO), the main mineral compounds in coal-bearing rock strata.
Past Processes
In the past, fly ash was generally released into the atmosphere, but air pollution control standards now require that it be captured prior to release by fitting pollution control equipment. In many countries, fly ash is either stored at coal power plants or placed in landfills. A substantial part of fly ash goes to the cement industry as a cement substituting material, to produce hydraulic cement or hydraulic plaster and a replacement or partial replacement for Portland cement in concrete production. Pozzolans ensure the setting of concrete and plaster and provide concrete with more protection from wet conditions and chemical attack.
Cenospheres are the most important ingredient of fly ash. These are unique free-flowing powders composed of hard-shelled, hollow, minute spheres. Cenospheres are made up of silica, iron and alumina. These have a size range from 1 to 500 microns with an average compressive strength of 3000+ psi. Colours range from white to dark grey.
Chemical composition
Fly ash particles are generally spherical in shape and range in size from 0.5?m to 300?m. The major consequence of the rapid cooling is that few minerals have time to crystallise, and that mainly amorphous, quenched glass remains. Nevertheless, some refractory phases in the pulverised coal do not melt entirely, and remain crystalline. In consequence, fly ash is a heterogeneous material. SiO2, Al2O3, Fe2O3 and occasionally CaO are the main chemical components present in fly ash. The mineralogy of fly ash is very diverse. The main phases encountered are a glass phase, together with quartz, mullite and the iron oxides hematite, magnetite and/or maghemite. Other phases often identified are cristobalite, anhydrite, free lime, periclase, calcite, sylvite, halite, portlandite, rutile and anatase. The Ca-bearing minerals anorthite, gehlenite, akermanite and various calcium silicates and calcium aluminates identical to those found in Portland cement can be identified in Ca-rich fly ash. The mercury content can reach 1 ppm, but is generally included in the range 0.01 – 1 ppm for bituminous coal. The concentrations of other trace elements vary as well according to the kind of coal combusted to form it.
The fineness or the particle size of fly ash is a very critical property. The commercial value of fly ash depends on the particles and percentage of unburned carbon. A total of 75 per cent of the ash must have a fineness of 45 -?m or less, and have carbon content, measured by the loss on ignition (LOI), of less than 4 per cent. The quality of fly ash also depends on the type of technology used in the boiler and the quality of coal. Indian coal generally has high percentage of ash compared to either Australian or South African coal.
The bottom ash, which is still a neglected portion of the same waste, can also find its way into concrete, replacing the stone aggregates. But a lot needs to be done on this material in our country.
Benificiation, the value addition
By using air separators, the fly ash can be divided into different grades depending on the particle size. The best example is that of Dirk India, a company which is only into selling of fly ash, and thriving. Dirk sources its fly ash from state electricity generating companies, and by using air classifiers, produces four different varieties of fly ash which have a good demand in the market.
Challenges in handling fly ash
In a typical fly ash handling system, the material that is generated as a result of combustion is captured by an electrostatic precipitator (ESP) or a bag house before the flue gases reach the stack. These ESPs and bag houses generally have multiple pyramidal hoppers at the bottom, in which the ash is collected by gravity and is then transferred to a storage silo. These storage silos generally have provisions for a truck load-out to carry the fly ash for disposal or reuse. As a result of the frictional nature and fine particle size distribution, fly ash handling systems often experience problems if they are designed without following a prudent engineering approach.
Flow rate limitation
The permeability of fly ash is typically very low, due to its fine particle size distribution. As a result, when de-aerated, fly ash provides considerable resistance to the flow of air or other gases. During discharge from a silo or hopper outlet, air counter-flow through the fly ash bed provides an opposing force to gravity. This air ingress occurs as a result of the natural expansion of the ash bed within the hopper as it flows, or simply due to leakage from the conveying system below. As a result, fly ash hoppers and silos are limited in terms of the maximum discharge rates that they can provide by gravity alone.
Flooding or uncontrolled flow
As a fine powder, fly ash can behave like a fluid when sufficient air is present. Flooding can result, particularly when the handling rate is too high to allow sufficient time for the entrained air to escape. In this case, the fly ash may become fluidised and flush through the outlet unless the feeder can contain it. Flooding not only creates a challenge in metering the discharge, it can also lead to serious environmental, health and safety concerns.
Wear
The presence of a significant portion of silicon dioxide makes fly ash very abrasive and frictional. As a result of material sliding and impacting within the handling equipment, wall surfaces undergo tremendous wear.
Dust generation
Dusting can particularly occur at transfer points where the air entrained in the powder is suddenly expelled, carrying these finer particles with it. Dust generation also occurs when local air currents have sufficient velocity to pick up particles from the surface of a pile. Dust by itself is a nuisance and, more importantly, it can result in safety concerns including the health effects of operator exposure and the potential for explosions.
Other problems
Agglomerated lumps of fly ash and foreign materials can create flow problems, especially when handling fly ash with air slides or aerated bin bottoms. Therefore handling of fly ash always requires proper engineering inputs. The progress made so far has been reasonable, but a lot still needs to be done considering the potential of the material. Let us look at some of the possibilities.
Fly ash as cement replacement and high-volume fly ash concrete
Indian codes permit use of fly ash up to 35 per cent as cement replacement in cement manufacturing. However, in the case of concrete, the percentage will depend on the mix design recipe. If we see the practise abroad, up to 65 per cent of fly ash can be used in concrete.
Two researchers, Dr PK Mehta and Dr VM Malhotra, have made a significant contribution to the engineering community. Dr Mehta is well known for his work on high-volume fly ash concrete. Here is an extract from one of his papers called ?Cement & Concrete Mixtures for Sustainability?:
"For a variety of reasons, the concrete construction industry is not sustainable. First, it consumes huge quantities of virgin materials. Second, the principal binder in concrete is Portland cement, the production of which is a major contributor to greenhouse gas emissions that are implicated in global warming and climate change. Third, many concrete structures suffer from lack of durability which has an adverse effect on the resource productivity of the industry. Because the high-volume fly ash concrete system addresses all three sustainability issues, its adoption will enable the concrete construction industry to become more sustainable."
In this paper, a brief review is presented of the theory and construction practice with concrete mixtures containing more than 50 per cent fly ash by mass of the cementitious material. Dr Mehta is a champion of using more than 50 per cent fly ash by mass of the cementitious material. Mechanisms are discussed by which the incorporation of high volume of fly ash in concrete reduces the water demand, improves the workability, minimises cracking due to thermal and drying shrinkage, and enhances durability to reinforcement corrosion, sulfate attack, and alkali-silica expansion. For countries like China and India, this technology can play an important role in meeting the huge demand for infrastructure in a sustainable manner, says Dr Mehta.
High-performance concrete (HVFA)
As per Dr Mehta, the characteristics defining a HVFA concrete mixture are, minimum of 50 per cent of fly ash by mass of the cementitious materials must be maintained, low water content, generally less than 130 kg/m3 is mandatory and for cement content, generally no more than 200kg/m3 is desirable. For concrete mixtures with specified 28-day compressive strength of 30 MPa or higher, slumps more than 150 mm, and water-to-cementitious materials ratio of the order of 0.30, the use of high-range water-reducing admixtures (super-plasticizers) is mandatory. For concrete exposed to freezing and thawing environments, the use of an air-entraining admixture resulting in adequate air-void spacing factor is mandatory. For concrete mixtures with slumps less than 150 mm and 28-day compressive strength of less than 30 MPa, HVFA concrete mixtures with a water-to-cementitious materials ratio of the order of 0.40 may be used without super-plasticizers. Dr Mehta further concludes in his paper, that throughout the world, waste-disposal costs have escalated greatly. At the same time, the concrete construction industry has realised that coal fly ash is a relatively inexpensive and widely available by-product that can be used for partial cement replacement to achieve excellent workability in fresh concrete mixtures.
Consequently, in the modern construction practice, 15 to 20 per cent of fly ash by mass of the cementitious material is now commonly used in North America. Higher amounts of fly ash in the order of 25-30 per cent are recommended when there is a concern over thermal cracking, alkali-silica expansion or sulfate attack. Such high proportions of fly ash are not readily accepted by the construction industry due to a slower rate of strength development at an early age.
The high-volume fly ash concrete system overcomes the problems of low early strength to a great extent through a drastic reduction in the water-cementitious materials ratio by using a combination of methods, such as taking advantage of the super-plasticizing effect of fly ash when used in a large volume, with the use of a chemical super-plasticizer, and a judicious aggregate grading.
Consequently, properly cured high-volume concrete products are very homogenous in microstructure, virtually crack-free, and highly durable. Because there is a direct link between durability and resource productivity, the increasing use of high-volume concrete will help to enhance the sustainability of the concrete industry.
In conclusion, high-volume fly ash concrete offers a holistic solution to the problem of meeting the increasing demands for concrete in the future in a sustainable manner and at a reduced or no additional cost. At the same time, it reduces the environmental impact of two industries that are vital to economic development – the cement industry and the coal-fired power industry. The technology of high-volume fly ash concrete is especially significant for countries like China and India, where, given the limited amount of financial and natural resources, the huge demand for concrete needed for infrastructure and housing can be easily met in a cost-effective and ecological manner.
Concrete
We consistently push the boundaries of technology
Published
2 months agoon
April 18, 2025By
admin
Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.
SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.
Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.
How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.
Key features include:
- High efficiency: Ensures optimal throughput for large volumes of waste.
- Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
- Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.
What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:
- Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
- Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
- Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
- Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.
What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.
This includes:
- Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
- Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
- Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
- Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.
How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:
- Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
- AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
- Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
- Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.
What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:
- AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
- Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
- Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
- Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
- Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.
(Communication by the management of the company)
Concrete
FORNNAX Technology lays foundation for a 23-acre facility in Gujarat
Published
3 months agoon
March 17, 2025By
admin
FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.
Concrete
Decarbonisation is a focus for our R&D effort
Published
4 months agoon
February 12, 2025By
admin
Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.
Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.
Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.
The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.
What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.
You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.
The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.
Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction

Cemex invests in AI optimisation through OPTIMITIVE

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction
