Connect with us

Technology

Selecting Boiler Technology for Multi-Fuel Firing

Published

on

Shares

In the recent past the power sector, including the captive power generation segment, has seen many changes at policy levels, in options for sale and purchase of power, technological changes, business models and above all in issues related to fuel availability.

Fuel availability stands out as one of the biggest challenges for an energy intensive industry. With weak or expensive grid, most of the energy intensive industries had to resort to captive power generation. However, with recent volatility in fuel supply and costs, industrial investors had to look at multi-fuel options.

Associated Risks
As an investor, who is looking at investment in a mid sized power project, he has to look at the risks he carries, safeguards to put in place to mitigate them. The investor is stumped with the plethora of options at each stage, be it:

Development risks, including:

  • Statutory clearances
  • Linkages
  • Financial closure
  • Land and rehabilitation

Construction risks, like:

  • Schedules
  • Cash flow
  • IDC
  • Quality

Technical risks, including:

  • Technology
  • Developer/contractor?s competence and experience

Commercial risks

  • Feasibility
  • Project schedule
  • Contractor?s financial strength

Operations and maintenance related risk

  • Heat rate guarantees
  • Manpower cost
  • Plant performance
  • And last but not the least, marketing and revenue related risk.

For a power project to succeed, an investor looks at the financial viability of the project. Two foremost factors on the investor?s mind are the project cost and the operating cost. Project cost comprise of capital cost, interest cost and the development cost. The second most important parameter being the operating cost of the power plant, which will enable him to forecast the cash flow. In a power plant the main operating costs being station heat rate, manpower cost and the cost of consumables.

The investor is concerned about the return on his investments, which come from the basic technical feasibility of the project and the technology being utilised. His return on investment also depends on the guarantees that he can get on the project cost and how well he can estimate and mitigate the variations. The performance guarantees are far more important than the project cost guarantees. Performance variations can bleed income from the project for its lifetime, which is typically about 20-25 years. The IDC and the returns starting to accrue come from the guarantee of the schedule he sets for the project and how it is adhered to. Generally, based on all these parameters and risk taking abilities of the investor and his bankers, the decision is taken whether to go ahead with the project on a packaged route of to pass the risk to a reputed EPC contractor.

An EPC contractor takes the entire risk of construction upon himself. If the EPC contractor is also a technology provider like a boiler manufacturer in the case of power plant, then even the technological risk is totally on to him. If the EPC contractor is ready to undertake long term operations and maintenance of the power project then the O&M risks is also passed on to him, leaving only the development risk and part of commercial risk in the developer and banker?s scope. The commercial risk can be further diluted with a financially sound EPC contractor and having watertight contract in place, leaving only the development risk in investor?s scope.

Role of Technology
In today?s context of fuel uncertainty, technology plays a vital role especially regarding boiler choice. One has to look at aspects like:

Boiler technology
Suitability of various kinds of fuels
Boiler pressure and temperature
Fuel firing limitations
Boiler efficiency and availability

Physical characteristics
Physical characteristics of the fuel should also be accounted for in the designing process. This is extremely important, in case biomass is being considered as a main or supplementary fuel. Physical characters include size, bulk density, flowability.

Chemical characteristics
Chemical constituents such as chlorine (elemental chlorine and not chlorides in ash) as chlorine in biomass can cause corrosion problems. So these factors must also be considered while designing the system. Alkali content (Na2O+K2O) in fuel leads to problems like slagging and fouling.

Boiler efficiency depends on moisture content in the fuel. Combustion efficiency depends on ash content and excess air. High excess air increases combustion efficiency however it also increases dry flue gas losses. NOx generation is a function of temperature, staging of air and excess air percentage.

If moisture content in fuel is high, in bed tubes can be avoided. In case most fuels being considered are solid fuels like mix of different types of coal, lignite or petcoke the options on technology can be a little easier.

Circulating Fluidised Bed Combustion Technology
Uncertainty regarding availability and reliability of single fuel type, stringent emission norms, constraints of firing multiple type of fuels in pulverised coal fired boilers and need of additional capital intensive accessories like coal mill, FGD, etc. led to development of Circulating Fluidised Bed Combustion Technology (CFBC) design. CFBC technology in today?s time of high fuel uncertainty and volatility can be considered as a boon to power and process industry requiring power and process steam.

CFBC is a fuel flexible technology, which can handle variation in GCV from 1800- 8000 kcal/kg, ash 5-65 per cent and moisture from 1-45 per cent. The turbulent bed, which is operating at 4-5.5 m/s, is able to enhance the fuel burn ability by rapid mixing of fuel with hot bed material resulting in efficient carbon burnout.

The CFBC technology has versions that have wider multi-fuel firing capability including:

Coal:

  • Anthracite, bituminous, sub-bituminous, lignite (Neyveli/Kutch/Barmer) and high-sulphur coal.

Waste Coal:

  • Washery rejects, char.

Petroleum coke (petcoke):

  • Delayed, fluid.

Other renewable fuels:

  • Sludge, oil pitches, biomass, agro-wastes and refuse derived fuel.

The new generation IRCFBC technology can easily cater to fuel with:

  • Moisture content up to 60 per cent, e.g., in lignite, peat, sludge
  • Ash up to 76 per cent, e.g., in washery rejects, char.
  • Sulphur up to 8 per cent, e.g., in lignite, petcoke.
  • Volatiles, as low as 1 per cent as in petcoke, washery rejects, char, etc.
  • HHV as low as 1500 Kcal/kg as found in washery rejects, char, etc.

Factors to be considered while choosing boiler technology
Here is a list of few important factors that must be considered while choosing boiler technology.

Compact, economical design and construction
If the boiler technology design has lower furnace exit gas velocity and requires significantly less building volume, say by relying on internal recirculation, the design can eliminate J-valves, loop seals, high-pressure blowers, and soot blowers, which makes the boiler compact and economical on lifetime costs.

Separation in stages for better bed inventory control
If the design has optimal stage wise particle separation system, it will help to provide high-solids loading and a uniform furnace temperature profile. The benefits of this include superior combustion efficiency, high operational thermal efficiency, low emissions, low maintenance, low pressure drop, and high turndown, resulting in improved overall plant performance and particle collection efficiency as high as 99.8 per cent for better inventory control. The separation technology must be of fit and forget type.

Performance in varying and low load conditions
With effective bed inventory and temperature control through controlled solid recycle rate from MDC to furnace you get better performance and operation of boiler. Turn down ratios as high as 1:5 can easily be achieved in some designs.

Start up and shut down time
Some designs have much lower refractory heat retention as compared to other CFBC designs. This allows quick start and shut down of the boiler.

Auxiliary consumption
Boiler designs with higher velocity of gasses leaving furnace to achieve solid separation like using centrifugal action generally have higher pressure drops thus higher auxiliary consumption. Boiler designs with lower velocity of gases have comparatively negligible pressure drop and much lower auxiliary consumption.

Availability and lower maintenance
Maintenance of boiler is directly related to the quantum of refractory the boiler design carries. Boiler design with least level of thick, uncooled refractory and no hot expansion joints, reduces the expenses and the lost time associated with refractory maintenance. If the particle separators and super heater enclosures are constructed entirely of top-supported, gas-tight, all welded membrane tube walls. These systems do not require hot expansion joints, the maintenance over the lifetime of the boiler can be minimised substantially.

Some boiler designs ensure that there is no soot formation and uniform furnace temperature profile is maintained. Erosion is a major cause of maintenance problems in CFBC boilers due to high solid load in the flue gas. The severity of this erosion is exponentially related to the velocity of the flue gas through the system. While some CFBC designs have the particle separator based on an extremely high flue gas velocity. The high velocity provides the energy needed to efficiently disengage the particles from the flue gas. Other designs have particle separator designed to operate efficiently with much lower flue gas velocity (5 to 6 m/s) at full-load operating conditions. By operating at such a low gas velocity, the potential for erosion in these designs is reduced significantly.

Considerations in multi fuel firing

Calorific Value
The lowest calorific value like washery will call for higher amount of fuel feeding into bed. The feeders need to be sized for 1:10 turndown.

Moisture
The furnace cross section is decided by the maximum flue gas volume generated by respective fuel. In case of lignite or biomass with high moisture, low calorific value fuel, the flue gas generated will decide the cross-section dimension of furnace. In addition to this the ESP, ID fans need to be sized for handling higher gas volumes.

Ash
Higher ash content in fuels enhances the heat transfer rate in furnace. To maintain solids mass flux in furnace, the excess solids are taken out of system through bed ash cooler, located beneath the boiler. Hence, for high ash fuels like Indian coal, washery rejects, the number of ash cooler is to be decided based on the high ash fuel. The ESP will see higher dust loading in Indian coal; hence higher collection area will be required comparative to when firing petcoke or imported coal.

Sulfur content
Imported, Indian coal, lignite, petcoke possess sulfur in the order of 0.7, 0.5, 2, 8 per cent in the fuel. In CFB the sulfur capture is done by adding limestone along with fuel. Limestone reacts with sulphate forming sulfur tri oxide that is removed through bed drains.

Hence, high sulfur in petcoke will require higher limestone content and hence the limestone RAVs will be sized to deliver the required quantity. These parameters must be given serious consideration before investing in a specific combustion technology.

Vivek Taneja
Head-Business Development, Thermax, Power Divison.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds