Concrete
Making self consolidating concrete using building demolished waste
Published
13 years agoon
By
admin
Preservation of the environment and conservation of the rapidly diminishing natural resources is the essence of sustainable development. Recycling of concrete from the Building Demolished Waste(BDW) to produce aggregates suitable for structural and non-structural applications is fast emerging as a commercially viable and technically feasible operation.Self-Compacting Concrete (SCC) is considered as a concrete which can be placed and compacted under its self-weight with little or no vibration effort, and which is at the same time, cohesive enough to be handled without segregation or bleeding. It is used to facilitate and ensure proper filling and good structural performance of restricted areas and heavily reinforced structural members.The use of Recycled Concrete Aggregate (RCA) in construction works is a subject of high priority in building industry throughout the world and it is a good solution to the problem of an excess of waste material, provided that the desired final product quality is reached. This reduces the consumption of the natural resources as well as the consumption of the landfills required for waste concrete. The technology today has advanced so far that it is forcing us to think in terms of ‘sustainability’. Ductility of concrete is provided with fiber reinforced cementitious composites, because fibers bridge crack surfaces and delay the onset of the extension of localised crack.Research significanceAn attempt has been made in the present investigation to develop a standard grade Self Compacting Concrete without and with polypropylene and glass fibers and without and with recycled aggregate. The present work provides very useful information for the practical use of fibrous self compacting concretes in the field, employing recycled aggregate form Building Demolished Waste (BDW).Properties of SCC in fresh stateA concrete mix is called Self Compacting Concrete if it fulfills the requirement of filling ability, passing ability and resistance to segregation. The filling ability is the ability of the SCC to flow into all spaces within the formwork under its own weight.Passing ability is required to guarantee a homogenous distribution of the components of SCC in the vicinity of obstacles. The resistance to segregation is the resistance of the com-ponents of SCC to migration or separation and remains uniform throughout the process of transport and placing. To satisfy these conditions EFNARC has formulated certain test procedures.IngredientsOrdinary Portland cement of 53 grade (compressive strength not less than 53 Mpa) was used in the study. The cement was selected as per IS-12269. Fine aggregate was standard river sand procured locally and was confirming to zone-II as per IS-2386. Crushed granite was used as coarse aggregate. The aggregate was passed through standard sieves of 16mm and retained on 4.75mm sieve. Recycled aggregate from building demolished waste was crushed and classified before use. For qualifying the utility of recycled aggregate in concrete, the important parameters like bulk density, voids ratio, specific gravity, water absorption, crushing and impact value, angularity and IAPST were determined based on IS Codal provisions. There properties were determined for different replacement of Recycled Concrete Aggregate (RCA) in Natural Aggregate (NA). The properties are shown in Table 1.Tests on FRSCRACThe slump flow equipment is currently used widely in concrete practice, and the method is very simple and straight forward. Thus the H-flow combined with T50 was selected as the first priority test method for estimating the filling ability of FRSCRAC. The V-funnel or Orimet tests are recommended as second priority alternatives to the T50 measurement. The passing ability of fresh SCC can be tested by U-box or J-ring. The basic properties of SCC without and with fiber and/or recycled aggregate are shown in Table 2. The fresh properties of SCC and FRSCC are suggestive of confirmation with the EFNARC Specifications.The source of fly ash used in the experiments was from a local coal fired thermal power station, where flyash is evolving out as a bye-product. The specific gravity was 2.05 with silicon dioxide content above 92 per cent. The fly ash was used as a partial replacement for cement. Conplast SP 337 superplasticizer and Viscosity Modifying Agent (VMA) were added in optimum dosages for improving the strength and workability properties of SCC. The Nansu mix design procedure is adopted to develop M40 Grade Concrete for different replacements of recycled aggregate in natural agg-regate and without or with fiber additions. The ingredients are shown in Table 3. The Glass Fiber (GF) is Cem-Fil Anti Crack and its specific gravity is 2.6 and the specific surface area is 105 m2 /kg. Poly Propylene Fiber (PF) with a diameter of 20-200 ?m, modulus of elasti-city 5-10 Gpa and tensile strength of over 500-750 mpa was used.Experimental programAn experimental program was designed to compare the strength properties of self- compacting concrete using recycled aggregate and without or with fiber addition. Cubes, cylinders and prisms of standard dimensions were cast and tested to determine the compressive strength, split tensile strength, flexural strength and modulus of elasticity of Fiber Reinforced Self- Compacting Concrete (FRSCC) using Recycled Aggregate (RA) from Building Demolished Waste (BDW).Casting and Testing of specimensThe influence of recycled aggregate and fiber on the behavior in compression, split tension and flexure is being investigated. 150×150 mm cubes for compressive strength, 150 mm diameter and 300 mm height cylinders for split tensile strength and 100x100x400 mm prism specimens for studying the modulus of rupture were employed. The program consisted of casting and testing a total number of 54 cubes, 54 cylinders and 54 prisms cast in 9 batches. Of these 54 cubes, 18 cubes corresponding to each Natural Aggregate (NA), 50 per cent Natural & Recycled (NARA) and 100per cent Recycled Aggregate (RA). Of these 18 cubes, six cubes correspond to each no fiber (WF), with PF and with GF additions. Similarly additional 54 cylinders (18 with NA, 18 with NARA, and 18 with RA) were cast for examining the stress-strain behavior of M40 grade for different fibers. The mix was designed as per modified Nansu method of mix design. All the specimens were demoulded after 24 hrs and kept in water for curing for 28days.The specimens were capped using plaster of paris to ensure plane-testing surface. Tinius Olsen Testing Machine (TOTM) of capacity 2000 KN was used for testing the specimens under standard load rate control. While testing, precautions were taken to ensure axial loading. For flexural strength standard three point loading was adopted. The modulus of elasticity of concrete was determined using compressometer setup and tested under TOTM.Discussion of test resultsThe results obtained from the detailed experimental program conducted on SCC without and with fiber are discussed. Table 4 shows the details of various mechanical properties viz., compressive strength, split strength and flexural strength for self-compacting concretes. The optimum fiber content was utilized through out the experimentation and this was based on initial strength and flow studies.Compressive strength of FRSCRAC
The mechanical properties of NA, NARA, and RA concrete cast without and with fiber additions are shown in Table 4.Addition of fibers has definitely increased the com-pressive strength, though marginally. The percentage increase in strength with fiber addition is plotted in Fig 5. It can be noted that the percentage increase is marginal. It is 1.90 per cent, 2.01 per cent in case of NA, 1.03 per cent, 1.62 per cent in 50 per cent Natural-Recycled Aggregate(NARA) and 0.94 per cent, 1.22 per cent in Recycled Aggregate(RA) with Polypropylene Fiber Reinforced Self-Compacting Concrete and Glass Fiber Reinforced Self-Compacting Concrete respectively. It can hence be concluded at this stage that fiber additions do not increase the compressive strength much.
Influence of fibers on split tensile strengthThe tensile strength of SCC is relatively much lower than its compressive strength because, it can be developed more quickly with crack propagation. Hence, it is important to improve the tensile strength of such a concrete. The variation of split tensile strength with fiber addi-tions is shown in Table 4. The increase is 14.19 per cent, 17.74 per cent in Natural Aggregate (NA), 9.97 per cent, 14.09 per cent in 50 per cent Natural-Recycled Aggregate (NARA) and 6.25 per cent, 11.72 per cent in Recycled Aggregate (RA) with GFRSCC and PFRSCC respectively (Fig 6). It can hence be inferred from the above that the fiber additions has a pronounced increase in the split tensile strength of self compacting concrete.Influence of fibers on flexural strength
Table 4 & Fig 7 show the details of the percentage increase in flexural strength for fiber additions. There is an increase in flexural strength of fibrous concretes as compared to no fiber concretes. The values are close to 0.7 as given by IS code for the relationship between flexural strength sqrt (fck) for normal concrete. The value of flexural strength to is more with polypropylene and glass fibrous concretes compared to no fiber concretes. From Fig 7, it is clear that there is an increase of 3.15 per cent, 13.32 per cent in Natural Aggregate(NA), 2.93 per cent, 9.57 per cent in 50 per cent Natural-Recycled (NARA) and 2.31 per cent, 8.96 per cent in Recycled Aggregate(RA) with GFRSCC and PFRSCC respectively. At this stage it may be concluded that the bending behaviour is greatly improved with glass fiber additions in self com-pacting concrete.Influence of fibers on modulus of elasticityThe brittle behavior of SCC is known. The fiber addition in such concretes modified the stress-strain behaviour of plain concrete. Using a compressometer setup and under compression the stress-strain values are evaluated and curves were drawn for the initial elastic portions. The Modulus of Elasticity (E) was calculated, following the specifications as laid by IS Code 516-1999. Table 4 shows the details of the values of modulus of elasticity for self-compacting concrete for Natural(NA), 50per cent Natural-Recycled (NARA) and Recycled Aggregate(RA) and without & with fiber respectively. It may be concluded that the addition of fiber in general increased the value of Modulus of Elasticity (E) of self-compacting recycled aggregate concrete. These values were close to 5000*vfck in case of no fiber concrete and higher in case of fibrous concretes.ConclusionsBased on experimental study on Fiber Reinforced Self Compacting Concrete (FRSCC) using recycled aggregate the following conclusions can be drawn.??From the properties of RCA it can be concluded that the coarse aggregate obtained from crushing BDW can be used for structural concrete works. This confirms the fact that RCA is in no way inferior to NA.??Self Compacting Concretes could be developed with recycled aggregate using high powder content, lesser quantity of coarse aggregate, high range super plasticizer and VMA to provide stability and fluidity to the concrete mixes.??There is a marginal increase in compressive strength, very good increase in the split tensile strength and a good increase in the flexural strength of FRSCRAC. The increase in split tensile and flexural strength is more in the case of glass fiber as compared to polypropylene fiber.??The relationship between compressive and split tensile strength and flexural and characteristic compressive strength for without and with fiber is suggested.??The fibrous specimens failed only by splitting of the fiber and there was no deboning of fibers noticed in any of the specimens.
Concrete
FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe
Published
2 weeks agoon
February 5, 2026By
admin
FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.
FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.
Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.
Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”
The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.
FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.
As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.
Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”
For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.
“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.
This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.
Concrete
Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook
Published
2 weeks agoon
February 2, 2026By
admin
Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement
Mumbai
Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.
The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.
The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.
Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.
Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”
He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”
Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”
CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.
Concrete
Steel: Shielded or Strengthened?
CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.
Published
3 weeks agoon
January 31, 2026By
admin
Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”
Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…
FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe
Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook
Steel: Shielded or Strengthened?
JK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
JK Cement Crosses 31 MTPA Capacity with Commissioning of Buxar Plant in Bihar
FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe
Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook
Steel: Shielded or Strengthened?
JK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA


