Connect with us

Concrete

Changing normal concrete into durable concrete for tunnelling application

Published

on

Shares

In this second part of the two-part series paper, the author EugenKleen of Mc-Bauchemie Mueller GmbH and Co.KG looks at the materials required to change normal concrete to durable media resistant concrete for use in tunnelling application.The main materials, which can help change normal concrete to durable aggressive media resistant concrete, are:??New generation PCE based admixtures??Condensed silica fume or microsilica slurry or??Latest generation aluminosilicatePCE based admixturesMost of the new generation superplasticizers are from the Acrylic Polymer (AP) family. Polycarboxylate is a common term for the substances that are specifically used as Polyacrylate or Polycarboxylate ether (PCE). The PCE based Super Plasticizers are by far superior to the conventional once with respect to initial slumping as well as slump retention with time. The efficient working of these plasticizers is due to the new type of molecule designs. PCE based superplasticizers produce excellent properties when used with cementitious materials. The disadvantages associated with longer setting times of conventional superplasticizers is offset by PCE based super plasticizer and therefore its use in concrete can also attain high early strengths. The development of highly effective superplasticizers with long and consistent duration of action is therefore an important precondition for the production durable concrete, due to low water contents and high early strength requirements.Concrete additives based on PCE offer advantages like:Significant reduction of the water demand of the mix??Little loss of consistency??Short setting times??High early strengths??Low tendency to segregationThe advantages of these new generation polymers are very clear, not only in terms of performance but also in terms of the dosages used for similar conditions and this factor balances the disadvantages in economy, as new generation superplasticizers are relatively expensive per unit price.Condensed Silica Fume/Microsilica:The term ‘microsilica’ is adopted to characterise the silica fume, which is used for the production of concrete. Microsilica or Condensed Silica Fume (CSF) is a by-product resulting from reduction of high purity quartz with coal in the electric arc furnaces used in manufacture of silicon, ferrosilicon and other alloys of silicon.There are three main reasons for the incorporation of silica fume as an additive for HPC. Microsilica has a filter effect i.e. very fine particle distributed itself in the space between the materials in the concrete in a homogenous way to give rise to more dense concrete. Silica fume improves the strength of the transition zone between cement paste and aggregates. CSF is highly pozzolanic in combination with Portland cement.During cement hydration there is surplus of calcium hydroxide. The added condensed silica fume’s SiO2 reacts with surplus of calcium hydroxide, which are greater amounts of calcium silicate hydrate, which are denser and stronger than calcium hydroxide. The pozzolanic reaction and the filler-effect lead to a compaction of the cement paste and the conversion of CH crystals into CSH gel leads to homogenous paste. The phenomenon of dense packing in the interface zone of aggregates also contributes to increase the strength of the concrete on account of aggregates fully contributing their strength of concrete with silica fume is greater than those of the matrix, indicating the contribution of the aggregate of microsilica (50:50 with water) have all the benefits in transportation, dispensing methods, mixing times and dispersions to get the desired effect in durable concrete for tunnelling segments.New Generation Aluminosilicates:New generation aluminosilicates based on special nano-crystalizers have been developed. These new materials improve the properties that are crucial for the durability of high performance concrete. In addition to reducing chloride migration, an exceptional chemical and resistance to aggressive media of the concrete can be achieved with aluminosilicates. The concrete structure is simultaneously reinforced right down to nanoscale, density is improved and compressive and flexure strength as well as abrasion resistance of the high-performance concrete is increased. There is also a significant reduction of micro-crack formation, which makes it particularly suitable for the production of tunnelling concrete. Aluminosilicate reduce the proportion of portlandite by way of a pozzolanic reaction that changes it into the aluminosilicate crystals into calcium silicate hydrate. In addition to the unique resistance against acids a crystalline micro-reinforcement within the concrete structure is achieved. This reduces the risk of micro-crack formation, rendering concrete impermeable.Due to high homogeneity and reduced tackiness compared with microsilica based concrete, workability is improved significantly. In many instances this enables the production of high-performance concrete that can be pumped. In addition, a distinct improvement of the building structure’s aesthetics is gained due to the fair appearance of the concrete surface. Aluminosilicates perform over some of the disadvantages of microsilica:??Graded for dispersion in concrete??Graded particle size??Optimises mixing time within concrete??Good dispersion reduces unreacted material in the mix and increases passivation by C-S-H gel on aggregate surface??Material if agglomerated improve strength of the mix??Reduces risk of alkali silica reaction by agglomeration of aluminosilicate particles.All in all, the use of PCE admixtures and microsilica or aluminosilicate slurries in addition to the standard ingredients in concrete, plus excellent mix-design practices can facilitate the production of high performance concretes resistant to aggressive media, suitable for use in tunnelling applications.

Key difference between Microsilica and Aluminosilica


Normal
0




false
false
false

EN-US
X-NONE
X-NONE













MicrosoftInternetExplorer4













Microsilica

Aluminosilica

1

By-product of
ferrosilicium and silicium production, not specifically produced for concrete

1

Manufactured product. It
is only produced for use as concrete additive

2

Quantities are depending
on the metal industry and the economic development

2

Quantities are not
depending on other industries and are unlimited, therefore reliable
availability

3

Quality of the product
has a higher deviation because it is only a by-product

3

High quality standards
for end product because every step in production is controlled




























































































Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

thyssenkrupp Polysius, SaltX partner for electrified production

Published

on

By

Shares

thyssenkrupp Polysius and Swedish startup SaltX have signed a Letter of Intent (LOI) to co-develop the next generation of electrified production facilities, advancing industrial decarbonisation. Their collaboration will integrate SaltX’s patented Electric Arc Calciner (EAC) technology into thyssenkrupp Polysius’ green system solutions, enabling electric calcination, replacing fossil fuels with renewable energy, and capturing CO2 for emission-free production. Dr Luc Rudowski, Head of Innovation, thyssenkrupp Polysius, emphasised that this partnership expands their portfolio of sustainable solutions, particularly in cement, lime, and Direct-Air-Capture (DAC). Lina Jorheden, CEO, SaltX, highlighted the significant CO2 reduction potential, reinforcing their commitment to sustainable industrial processes.

Continue Reading

Concrete

Terra CO2 secures $82m to scale low-carbon cement technology

Published

on

By

Shares

Terra CO2, a US-based sustainable building materials company, has raised $82 million in Series B funding, co-led by Just Climate, Eagle Materials and GenZero, with continued support from Breakthrough Energy Ventures. The investment will accelerate the commercial deployment of Terra’s OPUS technology, enabling the construction of multiple production facilities across North America and Europe. With the cement industry responsible for 8 per cent of global CO2 emissions, Terra’s solution provides an immediate, scalable alternative using abundant raw materials that integrate seamlessly with existing infrastructure. The company has secured key partnerships, including a deal with Eagle Materials for multiple 240,000-tonne plants.

Continue Reading

Concrete

Titan Cement Group enters South Asia

Published

on

By

Shares

Titan Cement Group has expanded into the South Asian market through a joint venture with JAYCEE, an India-based producer of supplementary cementitious materials. Titan will hold a majority stake in the newly formed company, Atlas EcoSolutions, which will focus on sourcing, processing, marketing, and distributing SCMs globally. This initiative aims to support sustainable construction by promoting alternatives to clinker-based cement. Jean-Philippe Benard, Head of Supply Chain and Energy Development, emphasised that the venture aligns with Titan’s strategy to lead in low-carbon building materials while reinforcing its commitment to sustainability and innovation. The move strengthens Titan’s position in a high-growth market while ensuring long-term access to SCMs.

 

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds