Connect with us

Concrete

Changing normal concrete into durable concrete for tunnelling application

Published

on

Shares

In this second part of the two-part series paper, the author EugenKleen of Mc-Bauchemie Mueller GmbH and Co.KG looks at the materials required to change normal concrete to durable media resistant concrete for use in tunnelling application.The main materials, which can help change normal concrete to durable aggressive media resistant concrete, are:??New generation PCE based admixtures??Condensed silica fume or microsilica slurry or??Latest generation aluminosilicatePCE based admixturesMost of the new generation superplasticizers are from the Acrylic Polymer (AP) family. Polycarboxylate is a common term for the substances that are specifically used as Polyacrylate or Polycarboxylate ether (PCE). The PCE based Super Plasticizers are by far superior to the conventional once with respect to initial slumping as well as slump retention with time. The efficient working of these plasticizers is due to the new type of molecule designs. PCE based superplasticizers produce excellent properties when used with cementitious materials. The disadvantages associated with longer setting times of conventional superplasticizers is offset by PCE based super plasticizer and therefore its use in concrete can also attain high early strengths. The development of highly effective superplasticizers with long and consistent duration of action is therefore an important precondition for the production durable concrete, due to low water contents and high early strength requirements.Concrete additives based on PCE offer advantages like:Significant reduction of the water demand of the mix??Little loss of consistency??Short setting times??High early strengths??Low tendency to segregationThe advantages of these new generation polymers are very clear, not only in terms of performance but also in terms of the dosages used for similar conditions and this factor balances the disadvantages in economy, as new generation superplasticizers are relatively expensive per unit price.Condensed Silica Fume/Microsilica:The term ‘microsilica’ is adopted to characterise the silica fume, which is used for the production of concrete. Microsilica or Condensed Silica Fume (CSF) is a by-product resulting from reduction of high purity quartz with coal in the electric arc furnaces used in manufacture of silicon, ferrosilicon and other alloys of silicon.There are three main reasons for the incorporation of silica fume as an additive for HPC. Microsilica has a filter effect i.e. very fine particle distributed itself in the space between the materials in the concrete in a homogenous way to give rise to more dense concrete. Silica fume improves the strength of the transition zone between cement paste and aggregates. CSF is highly pozzolanic in combination with Portland cement.During cement hydration there is surplus of calcium hydroxide. The added condensed silica fume’s SiO2 reacts with surplus of calcium hydroxide, which are greater amounts of calcium silicate hydrate, which are denser and stronger than calcium hydroxide. The pozzolanic reaction and the filler-effect lead to a compaction of the cement paste and the conversion of CH crystals into CSH gel leads to homogenous paste. The phenomenon of dense packing in the interface zone of aggregates also contributes to increase the strength of the concrete on account of aggregates fully contributing their strength of concrete with silica fume is greater than those of the matrix, indicating the contribution of the aggregate of microsilica (50:50 with water) have all the benefits in transportation, dispensing methods, mixing times and dispersions to get the desired effect in durable concrete for tunnelling segments.New Generation Aluminosilicates:New generation aluminosilicates based on special nano-crystalizers have been developed. These new materials improve the properties that are crucial for the durability of high performance concrete. In addition to reducing chloride migration, an exceptional chemical and resistance to aggressive media of the concrete can be achieved with aluminosilicates. The concrete structure is simultaneously reinforced right down to nanoscale, density is improved and compressive and flexure strength as well as abrasion resistance of the high-performance concrete is increased. There is also a significant reduction of micro-crack formation, which makes it particularly suitable for the production of tunnelling concrete. Aluminosilicate reduce the proportion of portlandite by way of a pozzolanic reaction that changes it into the aluminosilicate crystals into calcium silicate hydrate. In addition to the unique resistance against acids a crystalline micro-reinforcement within the concrete structure is achieved. This reduces the risk of micro-crack formation, rendering concrete impermeable.Due to high homogeneity and reduced tackiness compared with microsilica based concrete, workability is improved significantly. In many instances this enables the production of high-performance concrete that can be pumped. In addition, a distinct improvement of the building structure’s aesthetics is gained due to the fair appearance of the concrete surface. Aluminosilicates perform over some of the disadvantages of microsilica:??Graded for dispersion in concrete??Graded particle size??Optimises mixing time within concrete??Good dispersion reduces unreacted material in the mix and increases passivation by C-S-H gel on aggregate surface??Material if agglomerated improve strength of the mix??Reduces risk of alkali silica reaction by agglomeration of aluminosilicate particles.All in all, the use of PCE admixtures and microsilica or aluminosilicate slurries in addition to the standard ingredients in concrete, plus excellent mix-design practices can facilitate the production of high performance concretes resistant to aggressive media, suitable for use in tunnelling applications.

Key difference between Microsilica and Aluminosilica


Normal
0




false
false
false

EN-US
X-NONE
X-NONE













MicrosoftInternetExplorer4













Microsilica

Aluminosilica

1

By-product of
ferrosilicium and silicium production, not specifically produced for concrete

1

Manufactured product. It
is only produced for use as concrete additive

2

Quantities are depending
on the metal industry and the economic development

2

Quantities are not
depending on other industries and are unlimited, therefore reliable
availability

3

Quality of the product
has a higher deviation because it is only a by-product

3

High quality standards
for end product because every step in production is controlled




























































































Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News