Connect with us

Concrete

Concrete repair and corrosion control

Published

on

Shares

Corrosion of concrete happens due to various factors but it is necessary to repair the damage caused by such corrosion. In Part-1 of the two-part series, Upen Patel, Business Director, BASF India, dwells at length on the causes of deterioration and the remedy thereofOnce concrete repairs and strengthening was considered as an activity of rejuvenating the old structures and making them capable of loadings and environmental stresses in the future life. Today we are constructing more advanced and ever more-demanding structures with complex detailing and concrete repairs and strengthening starts during the construction stage itself. The complex and fast pace construction methods with reduced emphasis on adequate quality assurance results in to construction errors and creates needs for repairs and strengthening during construction. With the complex performance demands of the new structures and ever longer life expectancies makes concrete repairs, strengthening and protection procedures more and more demanding. This article is an attempt to present the fundamentals of concrete repairs and strengthening in a step-by-step process and focuses on the advantages and disadvantages of current practices and provides an insight in the futuristic but more simple to adopt techniques.Basic DefinitionsRepairs: To replace or correct deteriorated, damaged or faulty materials, components or elements of a concrete structure.Strengthening: The process of restoring the capacity of weakened components or elements to their original design capacity or increasing the strength of components or elements of a concrete structure.Protection: Making the structure capable to resist the likely deterioration due to the surrounding/ environment.Why concrete needs repairs?There are many factors which lead to the need of repairs such as:??Corrosion of reinforcement due to carbonation, chlorides??Sulphates??Alkali silica reaction??Environmental pollution??Deicing salts??Acid rains??Marine environment??Oils??Freeze thaw cycles??Abrasion or erosion from wind or water borne agents??Plants or microorganisms??Overloading??Physical settlement??Impact??Earthquake??Fire??Chemical attack by aggressive chemicals, sewerage or even soft waterAlso the deterioration gets aggravated due to errors/mistakes/poor workmanship during construction such as:??Higher w/c ratio??Honeycombs and compaction voids??Bleeding and segregation??Plastic shrinkages and hardening stage shrinkage cracks??Inadequate or no curing??In sufficient concrete cover??Cast-in chlorides from contaminated water/aggregates??Inadequate or excessive vibration during the concerting??Shutterwork or reinforcement movement during placement of concreteGenerally concrete structure requires repairs in the two events- New construction and during the service life. Repairs in the new construction require different approach then the repairs during service life and we shall deal one by one to better understand. The repairs during service life have more steps and we shall deal with it first. The repairs during service life arise due to certain deterioration taken place and understanding of the same is very vital in the design of the repair solution.Why concrete deteriorates?The reinforced concrete was designed with a basic understanding that its a marriage of two carrying spouses – concrete and steel. Concrete protects steel from getting corroded and steel protects concrete from getting cracked due to bending. The marriage was designed to last forever but the environment facilitates entry of many agents who leads the marriage to divorce…Major agents and their activities are described as under:-Carbonation: The high pH of concrete passivates steel reinforcement from getting corroded. The carbon dioxide / sulphur dioxide present in the atmosphere gets dissolved in the water and forms weak carbonic /sulphuric acid and enters the concrete reducing the pH, resulting in the loss of passivation layer around reinforcement. The reinforcement states getting corroded resulting in to the rust. The rust formed has 4- times the original volume of the metal creating bursting pressure in the concrete mass. The build up of the pressure eventually cracks the concrete and makes the access for ingress of corrosive water and other water dissolved agents easily. The quicker access aggravates the corrosion and structure starts deteriorating rapidly. Spalling of the concrete cover and formation of brown colored rust is a visual indication of the carbonation attack. The carbonation attack can be checked by phenolphthalein liquid. The reaction is at its best at 50-75 % relative humidity.Chloride attack: The main source of chlorides is the contaminated water or aggregates during construction and marine environment – direct contact with sea water or through wind borne chlorides in the splash zone. Chlorides ions are the passivating ferrous oxide layer on the steel reinforcement. Once reinforcement loses its passivation layer, it is highly susceptible to electro-chemical corrosion further induced by chlorides ions. The water dissolved chlorides ions form electro-chemical corrosion cell and establishes anodic and cathodic sites on the re-bar.The electro-chemical corrosion results in to pitting corrosion-reduction in the cross section of the re-bar at specific sites without noticeable deterioration of the concrete cover. The hidden reduction in the cross-section of the reinforcement can results in to sudden failure of the structure member-making this as one of the most dangerous deterioration in the concrete structure. There is no ‘net use’ of chloride ions during the corrosion process. Therefore, once enough chloride ions reach the steel to break the passivation layer only water, oxygen and a conductive medium is needed to maintain the corrosion reaction. Also note that since corrosion is a chemical reaction, temperature plays a role in the process. The higher the temperature the faster the corrosion reaction occurs. The general rule for the rate of chemical reactions is that for every 25 degree F increases, the reaction rate doubles.Sulphate attack: The main source of sulphates is the ground water. The sulphates attack on concrete, by reacting with the C3A in the concrete. The reactive product is larger in the volume resulting in to the expansive cracking in the concrete mass. The spalling and cracking of concrete takes place without any deterioration of the reinforcement to start with. With the time other forms of corrosion such as carbonation, chlorides becomes aggravated due to quicker access to the reinforcement. The sulphate attack can be reduced by using sulphate resistant cement which has low C3A content; but this reduces the resistance of chloride attack and hence no more a preferred option in the marine situation.Alkali-silica reaction (ASR): In the case of ASR the alkali-reactive aggregates forms expansive gels in the concrete structure resulting in to cracking and spalling.Step-by-step process to successful repairs:-Following steps are essential for successful repairs:-??Evaluation??Relating observations to causes??Selecting methods and material for repairs??Preparation of drawings and specifications??Selection of contractor??Execution of the work??Quality control??Preserve records for futureEvaluationEvaluate the current condition of the concrete structure. Structural analysis of the structure in its deteriorated condition, review of records of any previous repair work accomplished, review of maintenance records, visual examination, destructive and noon-destructive testing and lab analysis of concrete samples. Some of the popular tests used during the evaluation are summarised as under:-??Visual inspection and recording??Hammer sounding / Rebound hammer test??Phenolphthalein test for carbonation??Silver-nitrate test for chloride attack??Half-cell potential measurement??Core-cutting??Chemical analysis of concrete at different depthsRepair philosophyIt is most important to consider the full load envelope, which has been acting on the structure during the complete service life and in the future. The repair materials must have compatibility with the existing structure. The compatibility may be defined as a balance (equilibrium) of physical, chemical, electrochemical and dimensional properties between the repair material and the existing substrate in structural exposure conditions for a determined period of time.1st Compatibility: Physical/Permeability??Allow substrate to breath??Prevent entry of water and waterborne salts – Sulphate, Chlorides, SO2, CO2 2nd Compatibility: Chemical??No negative chemical interaction with the substrate??Absence of potentially dangerous substances such as chlorides, alkalies??No expansive ettringite formation of sulphate3rd Compatibility: Electro-chemical??Higher resistance to corrosion current??Must have conductivity and should not isolate substrate??Effective passivation of re-bars4th Compatibility: Dimensional stabilityCoefficient of Thermal Expansion: Different Coefficients of Thermal Expansion causes differential movement and hence shall be avoided.Modules of Elasticity: Under compression materials of different module will cause stress at the interface and hence shall be avoided.Drying shrinkage: Drying shrinkage of fresh mortar causes stresses at interface; hence needs to be controlled to minimum.(Extract from the paper presented by the author at the Construction Chemicals International Conference 2012 held in Mumbai)(Extract from the paper presented by the author at the Construction Chemicals International Conference 2012 held in Mumbai)

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Molecor Renews OCS Europe Certification Across Spanish Plants

Certification reinforces commitment to preventing microplastic pollution

Published

on

By

Shares

Molecor has renewed its OCS Europe certification for another year across all its production facilities in Spain under the Operation Clean Sweep (OCS) voluntary initiative, reaffirming its commitment to sustainability and environmental protection. The renewal underlines the company’s continued focus on preventing the unintentional release of plastic particles during manufacturing, with particular attention to safeguarding marine ecosystems from microplastic pollution.

All Molecor plants in Spain have been compliant with OCS Europe standards for several years, implementing best practices designed to avoid pellet loss and the release of plastic particles during the production of PVC pipes and fittings. The OCS-based management system enables the company to maintain strict operational controls while aligning with evolving regulatory expectations on microplastic prevention.

The renewed certification also positions Molecor ahead of newly published European regulations. The company’s practices are aligned with Regulation (EU) 2025/2365, recently adopted by the European Parliament, which sets out requirements to prevent pellet loss and reduce microplastic pollution across industrial operations.

Extending its sustainability commitment beyond its own operations, Molecor is actively engaging its wider value chain by informing suppliers and customers of its participation in the OCS programme and encouraging responsible microplastic management practices. Through these efforts, the company contributes directly to the United Nations Sustainable Development Goals, particularly SDG 14 ‘Life below water’, reinforcing its role as a responsible industrial manufacturer committed to environmental stewardship and long-term sustainability.

Continue Reading

Concrete

Coforge Launches AI-Led Data Cosmos Analytics Platform

New cloud-native platform targets enterprise data modernisation and GenAI adoption

Published

on

By

Shares

Coforge Limited has recently announced the launch of Coforge Data Cosmos, an AI-enabled, cloud-native data engineering and advanced analytics platform aimed at helping enterprises convert fragmented data environments into intelligent, high-performance data ecosystems. The platform strengthens Coforge’s technology stack by introducing a foundational innovation layer that supports cloud-native, domain-specific solutions built on reusable blueprints, proprietary IP, accelerators, agentic components and industry-aligned capabilities.

Data Cosmos is designed to address persistent enterprise challenges such as data fragmentation, legacy modernisation, high operational costs, limited self-service analytics, lack of unified governance and the complexity of GenAI adoption. The platform is structured around five technology portfolios—Supernova, Nebula, Hypernova, Pulsar and Quasar—covering the full data transformation lifecycle, from legacy-to-cloud migration and governance to cloud-native data platforms, autonomous DataOps and scaled GenAI orchestration.

To accelerate speed-to-value, Coforge has introduced the Data Cosmos Toolkit, comprising over 55 IPs and accelerators and 38 AI agents powered by the Data Cosmos Engine. The platform also enables Galaxy solutions, which combine industry-specific data models with the core technology stack to deliver tailored solutions across sectors including BFS, insurance, travel, transportation and hospitality, healthcare, public sector and retail.

“With Data Cosmos, we are setting a new benchmark for how enterprises convert data complexity into competitive advantage,” said Deepak Manjarekar, Global Head – Data HBU, Coforge. “Our objective is to provide clients with a fast, adaptive and AI-ready data foundation from day one.”

Supported by a strong ecosystem of cloud and technology partners, Data Cosmos operates across multi-cloud and hybrid environments and is already being deployed in large-scale transformation programmes for global clients.

Continue Reading

Concrete

India, Sweden Launch Seven Low-Carbon Steel, Cement Projects

Joint studies to cut industrial emissions under LeadIT

Published

on

By

Shares

India and Sweden have announced seven joint projects aimed at reducing carbon emissions in the steel and cement sectors, with funding support from India’s Department of Science and Technology and the Swedish Energy Agency.

The initiatives, launched under the LeadIT Industry Transition Partnership, bring together major Indian companies including Tata Steel, JK Cement, Ambuja Cements, Jindal Steel and Power, and Prism Johnson, alongside Swedish technology firms such as Cemvision, Kanthal and Swerim. Leading Indian academic institutions, including IIT Bombay, IIT-ISM Dhanbad, IIT Bhubaneswar and IIT Hyderabad, are also participating.

The projects will undertake pre-pilot feasibility studies on a range of low-carbon technologies. These include the use of hydrogen in steel rotary kilns, recycling steel slag for green cement production, and applying artificial intelligence to optimise concrete mix designs. Other studies will explore converting blast furnace carbon dioxide into carbon monoxide for reuse and assessing electric heating solutions for steelmaking.

India’s steel sector currently accounts for about 10–12 per cent of the country’s carbon emissions, while cement contributes nearly 6 per cent. Globally, heavy industry is responsible for roughly one-quarter of greenhouse gas emissions and consumes around one-third of total energy.

The collaboration aims to develop scalable, low-carbon industrial technologies that can support India’s net-zero emissions target by 2070. As part of the programme, Tata Steel and Cemvision will examine methods to convert steel slag into construction materials, creating a circular value chain for industrial byproducts.

Continue Reading

Trending News