Dr SB Hegde, Professor, Jain College of Engineering and Technology, Hubli and Visiting Professor, Pennsylvania State University, United States of America, helps us understand the process of maximising efficiency and sustainability better through the use of advanced gas balancing in cement manufacturing. This is part two of a three-part series.
In the first part of the article, we studied the improved efficiency and innovation in gas balancing brought about by Internet of Things (IoT), the fundamentals of gas balancing techniques and the kiln exit gas analysis. Let us look at the role of technology in the process of advanced gas balancing.
4. Emissions abatement technologies
Emissions abatement technologies are essential for reducing the environmental impact of cement production by capturing and treating pollutants emitted from the kiln and other process sources. These technologies include selective catalytic reduction (SCR), electrostatic precipitators (ESP), baghouse filters and wet scrubbers.
4.1. Key parameters monitored and controlled
– Nitrogen Oxides (NOx): Controlled using SCR systems, which catalytically convert NOx to nitrogen and water.
– Particulate Matter (PM): Controlled using ESPs, baghouse filters, or wet scrubbers, which remove particulate matter from the kiln exhaust.
– Sulphur Dioxide (SO2): Controlled using wet scrubbers or sulphur dioxide scrubbing systems, which remove sulfur dioxide from the kiln exhaust.
4.2. Latest Technicalities
– Advanced Catalyst Materials: Utilise novel catalyst formulations to enhance the efficiency and durability of SCR systems.
– High-Efficiency Filtration Media: Employ advanced filter materials with high filtration efficiency and low pressure drop to optimize particulate
matter removal.
5. Process Integration
Process integration involves the seamless coordination and optimisation of gas balancing techniques with other aspects of cement production, such as raw material preparation, clinker cooling and cement grinding.
By integrating gas balancing with overall process control strategies, cement plants can achieve holistic optimisation and maximise efficiency.
5.1. Key Parameters Monitored and Controlled
– Raw Material Composition: Controlled to optimise kiln feed chemistry and minimise energy consumption during clinker formation.
– Clinker Cooling Rate: Controlled to optimise clinker quality and minimise energy consumption during the cooling process.
– Cement Grinding Parameters: Controlled to optimise cement quality and minimise energy consumption during the grinding process.
5.2. Latest Technicalities
– Integrated Process Control Systems: Utilise advanced control algorithms and data analytics to optimise gas balancing alongside other process parameters in real-time.
– Digital Twin Simulations: Employ digital twin models of the cement production process to simulate and optimise gas balancing strategies before implementation.
Gas balancing in cement manufacturing relies on a combination of advanced techniques and technologies to optimise combustion efficiency, minimise emissions and maximise overall process performance.
By monitoring and controlling key parameters in combustion control systems, kiln exit gas analysis, emissions abatement technologies, and process integration, cement plants can achieve significant improvements in efficiency and sustainability, contributing to a more environmentally responsible cement industry.
6. Kiln exit gas analysis and its applications
Kiln exit gas analysis is a critical aspect of cement manufacturing, offering invaluable insights into combustion efficiency, clinker quality and overall kiln performance. By monitoring key parameters in the gases exiting the cement kiln, operators can optimise process conditions, improve energy efficiency and ensure product quality.
Let’s deep dive into the significance of kiln exit gas analysis, the parameters measured, and their implications for process optimisation, along with relevant case studies demonstrating its practical applications.
6.1. Significance of kiln exit gas analysis
o Monitoring combustion efficiency
Kiln exit gas analysis provides real-time feedback on the combustion process within the cement kiln. By measuring the concentration of combustion by-products such as oxygen (O2) and carbon monoxide (CO), operators can assess the efficiency of fuel combustion. Deviations from optimal combustion conditions can indicate issues such as incomplete combustion, improper air-to-fuel ratios, or burner malfunctions, which can lead to energy waste and reduced kiln efficiency.
o Assessing clinker quality
The composition of kiln exit gases can also provide insights into the quality of the clinker being produced. Factors such as the presence of volatile organic compounds (VOCs) or excessive dust levels in the kiln exit gases may indicate problems with raw material composition, kiln operation, or cooling processes, which can affect the final product quality. Analysing kiln exit gases allows operators to identify and address issues that could compromise clinker quality and downstream cement properties.
6.2. Parameters Measured in Kiln Exit Gas Analysis
• Oxygen (O2) Content
Oxygen content in kiln exit gases is a crucial parameter for assessing combustion efficiency. High levels of oxygen may indicate incomplete combustion, while low levels may suggest fuel-rich conditions. Maintaining optimal oxygen levels ensures efficient fuel utilisation and minimises energy consumption.
• Carbon Monoxide (CO) Content
Carbon monoxide is a by-product of incomplete combustion and can be an indicator of inefficient kiln operation or burner performance. Elevated CO levels in kiln exit gases signal the need for adjustments to improve combustion efficiency and reduce emissions.
• Volatile Organic Compounds (VOCs)
VOCs in kiln exit gases can originate from various sources, including raw materials, fuels, and additives. High levels of VOCs may indicate incomplete combustion, poor kiln feed quality, or leaks in the kiln system. Monitoring VOC emissions is essential for environmental compliance and maintaining air quality standards.
*References were shared in the first part.
About the author
Dr SB Hegde, a Professor at Jain College of Engineering and Technology (Jain University) and Visiting Professor at Pennsylvania State University, United States of America, brings over thirty years of leadership experience in the Cement Industry in India and Internationally. He has published over 198 research papers and holds six patents, with four more filed in the USA in 2023. Dr Hegde’s advisory roles extend to multinational cement companies globally and a governmental Think Tank, contributing to research and policy. Recognised for his contributions, he received the ‘Global Visionary Award’ in 2020 from the Gujarat Chambers of Commerce and Industry.