Concrete

Why CCUS Matters for Cement

Published

on

Shares

Paul Baruya, Director of Strategy and Sustainability, FutureCoal, suggests that the next decade will determine whether CCUS scales from demonstration to a mainstream pathway for net-zero cement.

Cement forms the essential foundation of modern infrastructure—homes, roads, ports, hospitals, wind turbine bases, and transmission pylons. It is also one of the most challenging industrial products to decarbonise at scale. That’s why carbon capture, utilisation and storage (CCUS)—has shifted from a “nice to have” to a strategic necessity for many credible net-zero pathways.
Annual carbon dioxide (CO2) emissions from cement are around 1.6 Gt worldwide and could more than double by 2050. To many, decarbonisation involves replacing fuels, but cement differs: a significant portion of its emissions comes from chemical processes rather than fuel combustion.
Cement’s climate footprint is significant. Global cement production totals around 4 billion tonnes per year, produced across more than 3,100 plants worldwide. At this scale, even relatively modest emissions intensity results in substantial absolute emissions. As a result, cement production is widely estimated to account for around 7–8 per cent of global CO2 emissions.
A key step in cement production is the creation of clinker, an intermediate product that is ground into cement. Clinker forms by heating limestone (calcium carbonate), which breaks down into lime (calcium oxide) and releases CO2. Even with a kiln powered entirely by zero-carbon electricity, the calcination process will still emit CO2.
FutrureCoal’s Sustainable Coal Stewardship explores solutions for fossil fuel users. For example, clinker substitution using coal fly ash can significantly reduce emissions; however, it cannot eliminate the chemical release of CO2. CCUS is one of the few mature options capable of substantially removing the remaining CO2.
The IPCC considers cement a “hard-to-abate” sector. In its Sixth Assessment Report (AR6), it states that CCS is crucial to eliminate calcination emissions, which account for 60 per cent of GHG emissions in modern cement plants (IPCC). Worldwide, CCUS will deliver two-thirds of cement sector emissions reductions by mid-century (CemNet+1).

Decarbonisation is not simple, there are four considerations:

  • Both energy use and chemistry drive emissions, where calcination is intrinsic to conventional clinker production (hence the IPCC’s emphasis on CCS).\
  • Kilns operate at high temperatures of 1,450°C; electrifying heat is theoretically possible but difficult to retrofit and expensive at today’s scale.
  • Plants are long-lived assets that last for decades; replacement cycles are slow, so retrofits and add-ons (such as CCS) become vital.
  • Cement is a low-margin bulk material. A slight cost increase per tonne matters in competitive markets—yet deep decarbonisation raises costs before policy and procurement catchup.

No single capture technology fits all plants, a variety is needed. These methods begin with proven post-combustion capture, then incorporate advanced, process-specific, and next-generation technologies as plants develop, energy systems decarbonise, and transport and storage infrastructure expand.

  • A mine-based post-combustion capture is the most advanced, already operating at a commercial scale. It captures CO2 from flue gases after combustion and calcination, making it suitable for retrofitting, but it is energy-intensive.
  • Oxyfuel combustion burns fuel in pure oxygen, producing a CO2-rich exhaust that is easier to capture, although it requires major modifications to the kiln and consumes significant energy for oxygen production.
  • Calcium looping leverages lime’s natural affinity for CO2, suitable for cement but complex and not widespread. Technologies like LEILAC capture CO2 during calcination with high purity and lower energy use, but they still require clean energy or additional methods to reach net zero.

Global cement demand is strongly connected to urbanisation, infrastructure development, and housing. Mature markets may plateau, while emerging markets can experience rapid growth.

India: A major decarbonisation opportunity
India is central to the global cement transition for three reasons: scale, growth trajectory, and the policy imperative to reconcile development with climate commitments.
The US Geological Survey (USGS) estimates India produced ~420 Mt in 2023 and ~450 Mt in 2024. That makes India one of the world’s largest producers, with continued capacity additions expected as infrastructure and housing demand grow.
Cement accounts for approximately 7–8 per cent of global CO2 emissions and around 5.8 per cent of India’s CO2 emissions in 2022, (GCCA). As India works toward its 2070 net-zero target, carbon capture, utilisation and storage (CCUS) will be an important component of its longer-term decarbonisation pathway.
India also highlights a broader reality: cement decarbonisation cannot rely on a single solution. Instead, it will require a combination of measures, likely including:

  • Lower clinker-to-cement ratios and supplementary cementitious materials,
  • Alternative fuels and efficiency,
  • For deep abatement, carbon capture for the remaining process emissions.

Challenges for CCS in cement
Carbon capture at cement plants is technically feasible, but still faces significant practical and economic challenges:
A challenging gas stream: Cement flue gas contains CO2 along with impurities and exhibits variable flow and temperature conditions. Capture units (amines, membranes, calcium looping, oxyfuel, etc.) need to be integrated carefully to avoid disrupting kiln operations.
Energy penalty and heat management: Many capture systems require significant energy, such as steam for solvent regeneration. Providing that energy without merely shifting emissions elsewhere is a design challenge; it encourages plants to research and develop low-energy solutions, waste heat recovery, blending low-carbon fuels, or all of the above.
Space constraints and retrofit limitations: Older plants may lack the physical footprint for large-scale capture equipment, compression, liquefaction, and CO2-handling infrastructure—especially in land-constrained industrial clusters.
Transport and storage are not “at the factory gate”: Even if capture is successful, you still need pipelines, shipping terminals, injection wells, permits, monitoring, and long-term liability frameworks. Cement CCS progresses most quickly where shared CO2 infrastructure is in place.
This is why projects increasingly cluster around hubs and why policy support and shared infrastructure are often the difference between pilot and commercial deployment.

Examples of the latest carbon capture on cement plants
A few projects demonstrate where the sector currently stands, progressing from pilots and studies into first-wave industrial deployment.
Brevik CCS (Norway): Heidelberg Materials inaugurated Brevik CCS in mid-2025, described as the world’s first industrial-scale CCS facility in the cement industry, designed to capture ~0.4 Mt CO2per year (Heidelberg Materials). CO2 will be shipped to Norway’s Northern Lights storage facility and the capture volume will equal half the plant’s total emissions at full capture (Reuters). Brevik is a blueprint to demonstrate end-to-end integration from capture to storage.
Padeswood (UK): Heidelberg’s cement plant at Padeswood has its CCS project construction slated to start in 2025 and net-zero cement production targeted for 2029 (Reuters). This underscores how public funding and CO2 infrastructure (Liverpool Bay storage) can unlock investment timelines.
LEILAC (Belgium): The EU-supported LEILAC project at Heidelberg Materials’ Lixhe cement plant in Belgium is testing a novel approach that targets process emissions rather than combustion emissions. The pilot facility is designed to capture approximately 18,000 tonnes of CO2 per year, with the follow-on LEILAC-2 phase exploring pathways to scale the technology toward commercial deployment (CINEA).
North America: In the United States, Holcim’s Ste. Genevieve cement plant has completed a front-end engineering and design (FEED) study assessing commercial-scale carbon capture, targeting up to 95 per cent of total CO2 emissions using an Air Liquide capture technology (OSTI). While not every FEED study progresses to a final investment decision, these projects provide important insight into where cement-sector carbon capture could realistically be heading.
India is exploring multiple technical approaches instead of a single solution. The country’s strategy involves government-backed testbeds to reduce risks in real-world plant conditions and industry roadmaps that show CCS/CCUS is essential for deep emission cuts. The Indian government is establishing five CCU testbeds in the cement industry through a public–private partnership (ETInfra.com+1). It focuses on hubs and storage options as enabling infrastructure to develop at scale (GCCA). India has launched a first-of-its-kind cluster of five CCU testbeds for the cement sector, organised as academia–industry pilots under a PPP model (ETInfra.com+1) including:

  • A pilot that captures CO2 via oxygen-enhanced calcination and converts it into lightweight concrete blocks and olefins (Ballabhgarh, Haryana, with JK Cement / NCCBM), and
  • A demonstration of carbon-negative mineralisation that locks CO2 into solid minerals (IIT Kanpur + JSW Cement) (ETInfra.com)
    These testbeds aim to show the real-world performance of capture and utilisation options—capture rates, product quality, energy needs, operability, and integration with kiln systems—before scaling up to full commercial units.

Why the “hubs + storage” framing matters for India? Capture at plant level is only part of the solution: meaningful scale also relies on gas transport, permanent storage, and the development of CO2 hubs (Clean Energy Ministerial+1). This hub approach is particularly relevant because it can:

  • Reduce unit costs through shared compression/transport infrastructure,
  • Concentrate on early projects where storage/transport is most feasible, and
  • Give financiers confidence that captured CO2 has a viable end-point (storage or durable utilisation) rather than becoming stranded.

The bottom line
Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that, absent a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.
The emergence of operational projects such as Brevik, the expansion of hub-linked initiatives across Europe, and a growing pipeline of pilots and front-end engineering studies indicate that the sector is beginning to move from ambition to execution. The coming decade will be decisive in determining whether CCS remains a premium, limited pathway, or becomes a mainstream industrial standard for delivering net-zero cement.

About the author:
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, is a strategy and sustainability leader shaping FutureCoal’s vision for the role of coal in a net-zero future, bringing deep expertise in energy markets, emissions modelling, and transition pathways.

Trending News

© COPYRIGHT 2024 ASAPP Info Global Services Pvt. Ltd. All Right Reserved.