Connect with us

Concrete

Leading the Green Revolution

Published

on

Ajay Kapur, CEO – Cement Business, Adani Group, explores India’s proactive measures, from embracing renewable energy and waste heat recovery to reducing clinker usage and innovatively repurposing industrial by-products, signaling a promising shift towards sustainable cement manufacturing.

Imagine a world without cement – it’s almost like picturing a skyline without its defining structures. As one of the most commonly used building materials, the manufacturing of cement faces significant challenges in decarbonising. Tackling this challenge goes beyond the ordinary, considering that the cement sector is a major player, contributing up to 7-8 per cent of global greenhouse gas emissions. The significance of this issue is particularly pronounced for India, as we currently hold the dual status of the world’s second-largest producer and consumer of cement. The production capacity of the Indian cement sector is poised to grow to more than 700 million tonnes (MT) over the next five years from around 570 MT now. Consumption on the other hand is also set to grow to 450 MT by 2027.
As the Indian economy expands and continues on this growth path to reach $5 trillion in GDP in the near term and emerge as the world’s third largest economy before the end of the current decade, the environmental challenges will also become more formidable.
Most large cement manufacturers in India have already committed to becoming carbon neutral sometime around the middle of this century and this is also going to contribute to India’s Net Zero ambition set for 2070. The road ahead for Indian cement manufacturers is very similar to what the energy sector faces. India’s economic turnaround that started in 1991 also brought home conversations around the rising and unprecedented levels of consumption of energy to fire up the economy, putting the country under the environmental spotlight, too. Cement production is not only energy intensive but also depends on natural mineral resources. The widespread adoption of well-understood and sustainable cement production practices has been a gradual process, gaining momentum over time. Today, the Indian cement sector is ready to meet sustainability challenges head-on through a whole range of measures that covers the entire value chain in cement manufacturing, leading all the way to increasing the share of green cement on the demand side.

Alternative fuel and raw materials
Being an energy-intensive sector, cement manufacturers have started investing in cleaner sources of energy like solar and wind as captive generation units to run their plants. This shift in no small measure is supported by the falling cost of renewable energy India. Between 2010 and now, the cost of solar modules in India have dropped by more than 80 per cent, making it one of the most sought after sources of clean energy for large industrial units including cement. Similar efforts are also on to move finished cement, packed and bulk on more sustainable or green logistics like soya extract-based biofuel powered shipping. Bulk terminals and grinding units along India’s long coastline can enable the movement of clinker and cement through the sea route at the lowest possible cost.
The share of green energy is further enhanced through investments in Waste Heat Recovery Systems (WHRS). These systems not only adhere to the principles of the circular economy but also result in fossil fuels savings. This not only nurtures a more cost-efficient process but also directly impacts the bottom line.
According to the Ministry of New and Renewable Energy (MNRE), the Indian cement Industry has the highest potential to adopt WHRS as an alternative to conventional sources of energy. WHRS installations will continue to grow along with the increase in capacity to manufacture cement, bringing it close to 1.3 GW at current production capacity levels. It is estimated that WHRS would help replace the energy requirement equivalent to 8.6 million tonnes of coal, resulting in emissions savings of 12.8 million tonnes of CO2 by the Indian cement manufacturers.
Cement manufacturers are also cutting down on the ‘clinker factor’ by replacing them with industrial by-products without compromising the quality (strength) of the cement. Cutting down the clinker factor offers two immediate benefits. One, it reduces energy consumption because clinker is produced at ~1400°C (from limestone etc.,) and two, it also softens the environmental impact of by-products like flyash, slag and silica fumes. Manufacturing a tonne of Ordinary Portland cement also releases around 800 kg of CO2. Investments are also made in recycling massive quantities of municipal waste into Refuse Derived Fuel or RDF through its pre- and co-processing facilities, which is then used as energy to run cement kilns. The impact of producing and using RDF not only saves on energy from conventional sources but also helps large cities manage municipal waste in a safe manner. Mega cities like Mumbai are now working with cement companies to manage municipal waste through a symbiotic relationship that benefits manufacturers and city administrators.
Red mud, a waste derived from aluminium production, is also now used in the cement manufacturing process as an alternative raw material. Again, this helps build a circular economy through utilisation of aluminium industry’s by-products in an environmentally sound manner. Other large industrial sectors like pharmaceuticals also tapped for zero residue of their process waste and ETP sludge. Similarly cement manufacturers are also able to process hazardous wastes released by the automobile and automobile ancillary sector such as chromium, zinc and paint sludge, oil residue and cotton waste.
Water management is yet another area that is making cement manufacturing in India more sustainable. Apart from becoming water positive (returning more water than what is consumed) from an operations point of view, a lot is also being done under the larger banner of CSR where cement manufacturers are now active participants in water conservation projects, working along with local rural communities including farmers. Large cement manufacturers in India are also working on conserving biodiversity in their areas of operations including large afforestation projects, which helps in strengthening the water table.

Conclusion
India today has a very robust legislative mechanism to ensure that industrial sectors like cement abide by environmental laws. But cement manufacturers, recognising the growing environmental consciousness among consumers, are actively pursuing higher benchmarks to minimise burden on environmental damage. With the growing consumer centricity that has moved cement from being a commodity to a branded consumer product, manufacturers are now able to offer sustainability as part of the brand value and appeal. Green cement as a product in India is still in its nascent stage with a miniscule share in the overall market. It is expected to grow in coming years as sustainability is an important factor for today’s buyers.
Today’s well-informed consumers also expect manufacturers to play a more responsible role in protecting the environment through sustainable manufacturing practices. The transformation of the Indian cement sector has only begun.

ABOUT THE AUTHOR:
Ajay Kapur, CEO – Cement Business, Adani Group
has over 30 years of expertise in the cement, construction, power and heavy metals sector. He has been extensively involved in several business forums, such as CII, FICCI, and ASSOCHAM.

Concrete

Our products are designed with the latest automation technology

Published

on

By

S K Ambasta, CEO, ATS Conveyors, talks about their material handling and transportation solutions, which are crafted as per European standards, ensuring high quality and low maintenance.

Tell us about your material handling and transportation solutions.
ATS Group is an established material handling equipment manufacturer company globally, offering various proven solutions for AFR material handling and transportation that include Automated Garb Crane, Extractor, Doseahorse, Sidewalls Belt Conveyor, Air Floating Belt Conveyor, Double Flap Valve, etc.

Explain the functionality of the material handling installations at a cement plant.
ATS solutions for AFR co-processing circuit ensure regulated extraction, dosing, conveying and feeding of AFR materials to calciner in cement plant.

What is the impact of your solution on the cost and production efficiency of cement plants?
ATS offers solutions to help cement plants to consume more AFR material, leading to reduced consumption of coal, which consecutively reduces their production cost as well as helps in regulation of carbon emission to contribute towards NET Zero.

Tell about the role of automation and technology in building your solutions for cement plants.
Our products are designed with the latest automation technology, be it the automated control and monitoring of grab cranes, auto calibrator for extractor or achieving the shortest cycle time for operation of double flap valves.

Do you customise your solutions for cement plants based on their requirements?
Majority of our solutions are customised based on the different types and characteristics of AFR material to meet customised capacity requirements of cement plants.
All equipment is designed and manufactured in accordance with European Standards, namely, NF EN 618, NF EN 619, EN ISO 13857, NF EN 620, NF EN ISO 14122-1-2-3, NF EN ISO 12100-1-2, 2006/42/CE, etc.

Tell us about the major challenges you faced in terms of the cement plants.
Major challenge faced by us in cement plants is that the AFR materials available are majorly un-processed, which becomes a challenge for consistent performance of our equipment.

Which innovations are in the pipeline that the cement industry can look forward to?
Our recent innovative product Twin Doseahorse is a very unique solution to fulfil dual feeding requirements. Also, this has been awarded as Product of the Year in Cement Expo 2023. Additionally, we have launched Air Floating Belt Conveyor, which is a unique solution to convey AFR with minimised spillage and with minimum structural work leading to reduced CAPEX cost. Further, we are also launching a high capacity Double flap valve, which shall be capable of feeding up to 400 m3/hr of AFR material.

Continue Reading

Concrete

Revolutionising the Future

Published

on

By

Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering and Technology, Hubli, and Visiting Professor, Pennsylvania State University, USA, discusses the hydrogen and automation revolutions in the cement industry in the concluding part of this two-part series.

The global cement industry is undergoing a transformative phase by embracing the hydrogen revolution as a beacon of sustainable energy. This paradigm shift involves the incorporation of green hydrogen as a clean energy source, not only reducing environmental impact but also establishing new benchmarks for responsible energy use in cement production.

Usage of hydrogen in cement plants.
A. Global status

Globally, several leading cement manufacturers have initiated pilot projects and full-scale implementations of hydrogen-based technologies in cement production. As of the latest data, the cement industry accounts for approximately 7 per cent of global carbon dioxide emissions, making the adoption of green hydrogen crucial for achieving emission reduction targets.
In Germany, for instance, a prominent cement plant has invested over €40 million (approximately US$ 45 million) in a green hydrogen project. This initiative is expected to replace a significant portion of traditional fossil fuels, leading to a substantial reduction in carbon emissions.
B. Indian perspective
In the Indian context, the hydrogen revolution is gaining momentum as the cement industry strives to align with the nation’s commitment to sustainable development. While still in the early stages, pioneering cement plants in India are actively exploring the integration of green hydrogen into their production processes.
C. Current initiatives and investments in India
An exemplary case is a major cement manufacturer in India investing Rs 120 crores (approximately US$ 16 million) in a green hydrogen pilot project. This initiative aims to assess the feasibility of using green hydrogen as a primary fuel in cement kilns, with the potential to reduce carbon emissions by up to 30 per cent.
D. Challenges and opportunities
Despite the promising trajectory, challenges such as the cost of green hydrogen production and infrastructure development need to be addressed for widespread adoption. The Indian government’s focus on promoting green hydrogen and the establishment of a National Hydrogen Mission indicate a conducive environment for overcoming these challenges.
E. Environmental impact
The incorporation of green hydrogen into cement production offers a significant reduction in greenhouse gas emissions. As hydrogen combusts without producing carbon dioxide, it presents a cleaner alternative to traditional fossil fuels, aligning with global efforts to mitigate climate change.
F. Setting new standards
By embracing the hydrogen revolution, the cement industry is not only reducing its environmental impact but also setting new standards for responsible energy use. This shift positions cement manufacturers as leaders in sustainable practices and reinforces their commitment to a low-carbon future.
G. Future trajectory
The hydrogen revolution in cement production is poised to become a cornerstone of sustainable manufacturing globally and in India. Continued investments, collaborative research, and government support are expected to drive the widespread adoption of green hydrogen, ushering in a new era of responsible and environmentally conscious cement production.
Automation Revolution
As the cement industry propels into the future, a seismic shift is underway, steering towards a highly automated and robotic workforce. This commitment to automation transcends geographical boundaries, reshaping the landscape of cement production with a focus on precision, safety, and unparalleled efficiency. Let’s delve into the global and Indian scenarios, incorporating some figures to the transformative impact of robotics in the cement industry.

Global landscape
A. Adoption of automation

Globally, leading cement manufacturers are at the vanguard of adopting automation and robotic technologies. According to industry reports, over 50 per cent of major cement plants worldwide have integrated robotic systems into their production processes, marking a substantial increase in the last five years.
B. Safety and precision
The paramount focus is on ensuring the safety of human workers and achieving precision in tasks that are critical to cement production. Studies show a 70 per cent reduction in workplace accidents in cement plants that have implemented robotics, demonstrating a tangible improvement in safety conditions.
C. Efficiency gains
Automated and robotic systems significantly enhance the efficiency of cement production. Reports indicate a 20 per cent increase in production efficiency and a 15 per cent reduction in downtime in cement plants where robotic technologies are fully integrated. These gains contribute to cost-effectiveness and operational excellence.


D. Examples of implementation
In Europe, a major cement plant has deployed autonomous robotic vehicles for transporting raw materials within the facility. This not only reduces manual labour but also streamlines the logistics process, contributing to a 25 per cent improvement in overall operational efficiency.

Indian scenario
A. Adopting trends

In India, the adoption of robotic systems in the cement industry is steadily gaining traction. According to industry forecasts, over 30 per cent of large cement plants in India have initiated or completed the integration of robotic solutions into their production processes, with projections indicating a further 15 per cent increase in the next three years.
B. Safety enhancement
With a commitment to worker safety, Indian cement plants are integrating robotics into tasks that involve potential risks. Reports suggest a 40 per cent reduction in accidents related to material handling and other hazardous processes in plants where robotic systems are actively employed.
C. Efficiency and precision
The Indian cement industry is witnessing increased efficiency and precision in production through the deployment of robotic systems. According to operational data, cement plants in India have experienced a 12 per cent improvement in packaging precision and a 30 per cent reduction in errors in tasks performed by robots.
D. Collaborations and investments
To expedite the adoption of robotics, Indian cement manufacturers are collaborating with robotics companies and investing in research and development. Industry reports indicate that the Indian cement sector has witnessed a 25 per cent increase in investments in robotic technologies in the last two years.
E. Future trajectory
The future of cement production globally and in India is undeniably linked to the continued integration of robotic technologies. As advancements in robotics and automation unfold, the industry is poised to witness further improvements in safety, precision and overall efficiency. Projections estimate a 10 per cent increase in global robotic adoption in the next decade, with India leading this trend with an anticipated 20 per cent growth in robotic integration.

Global trends in marketing, technology and sustainability

  1. Virtual global presence
    Establishing a virtual global presence through digital showrooms is a strategic approach, especially in an increasingly digital world. This provides customers with convenient access to your products regardless of geographical boundaries.
  2. Augmented reality engagement
    Augmented reality adds an interactive and immersive dimension to your marketing materials. It enhances customer engagement and understanding of your products, making the experience more memorable.
  3. AI-powered personalisation
    Personalised marketing content through AI algorithms demonstrates a customer-centric approach. Understanding and addressing individual needs can enhance customer satisfaction and loyalty.
  4. Virtual knowledge sharing
    Offering virtual workshops and e-learning platforms is an excellent way to empower customers with knowledge. This not only builds trust but also positions your company as a thought leader in the industry.
  5. Global educational partnerships
    Collaborating with international educational institutions contributes to knowledge exchange and the development of industry best practices. It fosters a global community focused on innovative construction methods.
  6. A sustainable global future
    The emphasis on a sustainable global future reflects a broader commitment beyond business goals. It aligns with the growing importance of corporate social responsibility and environmental stewardship.

Conclusion
In wrapping up our journey through the innovations and sustainable practices in the global cement industry, it’s clear that our commitment to excellence is shaping the future of construction. Embracing smart technologies like Industry 4.0 in cement plants ensures efficient and eco-friendly production.
Our drive towards emission-free aspirations, with the use of advanced technologies, signifies a crucial step in creating a cleaner, greener world. We are actively reducing our carbon footprint, setting ambitious goals for a sustainable future.
The transition to electrifying kiln technology reflects our dedication to cleaner production methods. By incorporating green hydrogen, we are not just reducing environmental impact but also setting new standards for responsible energy use in cement production.
In marketing, our approach goes beyond borders. The use of virtual showrooms, augmented reality and AI-powered personalisation ensures that customers globally have an immersive and personalised experience.
Empowering customers through virtual knowledge sharing and global educational partnerships showcases our commitment to spreading valuable insights globally. We envision a future where education and innovation lead to sustainable construction practices worldwide.
In essence, our strategies aren’t just about revolutionising the cement industry; they are about creating a better, more sustainable world for everyone. By pushing the boundaries of innovation, embracing sustainability and fostering global education, we’re paving the way for a brighter future in construction.

References
Klaus Schwab, The Fourth Industrial Revolution, World Economic Forum, 2016.
International Energy Agency, Technology Roadmap: Carbon Capture and Storage, 2013.
International Energy Agency, Energy Technology Perspectives 2020, 2020.
International Renewable Energy Agency, Green Hydrogen Cost Reduction: Scaling up Electrolyzers to Meet the 1.5°C Climate Goal, 2021.
International Federation of Robotics, World Robotics 2020 – Industrial Robots, 2020.
McKinsey & Company, Reimagining marketing in the next normal, 2021.
Statista, Augmented and virtual reality (AR/VR) forecast spending worldwide 2020-2024, 2021.
Forbes, AI For Marketers: 8 Best Practices to Boost Your Strategy, 2021.
E-learning Industry, Top eLearning Statistics and Facts For 2021, 2021.
UNESCO, Global Education Monitoring Report 2020, 2020.
United Nations, Sustainable Development Goals, 2021.

About the author:
Dr SB Hegde
is an industrial leader with expertise in cement plant operation and optimisation, plant commissioning, new cement plant establishment, etc. His industry knowledge covers manufacturing, product development, concrete technology and technical services.

(*Refer to the January 2024 issue of Indian Cement Review for the first part of this article.)

Continue Reading

Concrete

Safe plant concept means safety of the entire workforce

Published

on

By

Ashutosh Shrivastava, Head – Corporate Safety, JK Cement, talks about their commitment to maintaining a safe, healthy and environmentally friendly workplace as well as the continuous efforts being employed to enhance safety through technology, training and a proactive approach to addressing the behavioural aspects of safety.

What is the definition of a ‹safe› plant in your organisation?
Safe plant concept means safety of the entire workforce, including both employees and visitors coming to the plant for their respective nature of activity, by taking appropriate safety control measures as per the risk associated with the activity.

Tell us about the key areas where safety in a cement plant is of paramount importance?
In a cement plant, the key areas where safety management system plays an important role are:

  • Plant gate for heavy vehicle entry: An SOP has been developed for the entry of heavy vehicles inside the plant for loading and unloading activity, along with an SOP of high standard vehicle traffic management safety, which is being followed.
  • Packing plant area: In the cement industry, the maximum workforce involved is at the packing plant operation, as the major activity of cementing bags and loading them onto vehicles by using conveyor belts at loading points is being undertaken. For safe loading operations, an SOP has been developed. The SOP Task Risk Assessment is conducted and applied along with safety control measures, based on activity SOP.
  • Process area: To maintain safe process operations, various associated activities are carried out. For example:
  • Hot material handling: Poking and cyclone jam cleaning activities at preheater and kiln locations, etc.
    Hot work: Naked flame producing activity (welding / grinding / gas cutting)
    Working at height activity: Work at 1.8 m or more is called working at height activity
    Electrical isolation activity (called Log Out / Tag Out)
    Confined space activity
    Lifting activity
    Material shifting activity
    Raw material unloading activity by using mobile equipment
    Non-routine activity like plant shutdown
    Civil work inside plant
    Project works (new process equipment installations, new civil building, old steel and civil structure demolition and erection)
  • For all these activities, the safety management system has adopted certain tools:
    Elimination of hazards
    Process substitution
    Engineering controls like machine / equipment guarding, log out / tag out, hard barications etc.
    Administrative controls like permit to work system for high risk activities, Activity SOPs/OCP, activity risk assessment, job specific safety training, tool box talks, workplace safety inspection, safety observation tours, hazards reporting, near-miss and incident reportings, safety meetings, etc.
  • What are the safety equipment used by the personnel in different areas of work?
  • Since there are different types of activities going on inside a cement plant, based on a specific activity, the workforce uses personal protective equipment (PPE) and other safe design equipment, such as:
  • Hot works (welding / grinding / gas cutting): Heat resistance suit, hot work safety hand gloves, face shields, hot works safety goggles, safety helmet, safety shoes, gas cylinders pressure gauge, flash back arrestors, fire hydrant line, fire extinguishers, etc.
  • Height works: Full body safety harness with double lanyard with shock absorber, life line, safe design scaffolding platform, boom lift, scissor lift, cherry picker, safety goggles, safety helmet, safety shoes, job specific safety hand gloves, etc.
  • Hot material handling activity: Full body heat resistance suit, hot material handling safety gloves, heat resistance safety shoes, heat resistance face shield, fire hydrant line, fire extinguishers, etc.
  • Confined space works: Use of gas detectors, forced ventilation system, life line. rescue equipment, electrical isolation system (log out / tag out), safety goggles, safety helmet, safety shoes, job specific safety hand gloves and nose mask.
  • Electrical works: Electrical isolation system (log out / tag out), safety goggles, electrical job specific safety helmet, electrical job specific safety shoes, electrical job specific safety hand gloves, electrical job specific face hood, electrical shock resistance suit, etc.
  • Lifting activity: Third party approved lifting tools and tackles and third party approved mobile equipment (mobile cranes).
  • Material shifting activity by using mobile cranes: Third party approved lifting tools and tackles, third party approved mobile equipment (mobile cranes, fork lift, etc).

Tell us about your organisation’s policies about safety for people working in the plants?
Summary of the company’s Safety, Health and Environment Policy:

  • The Company, as a good corporate citizen, assumes its business and ethical responsibility to create a safer and healthy workplace for its employees and a clean environment to its employees as well as surroundings.
  • With the company›s global vision, we aspire for the highest international standards in plant design, equipment section, maintenance and operation, which are consistent with its emerging leadership position in cement business, the company will constantly encourage higher international standards in all areas including safety, health and environment.
  • The Company as a part of its corporate philosophy and policy is committed to manufacture products safely and in an environment-friendly manner with due consideration for occupational health for employees and others who may be involved and / or affected by its operation.
  • The company will comply with all applicable laws and regulations (local /state/federal) pertaining to its operations.
  • The Company widely participates with the government, the industry and others concerned in creating relevant laws, regulations and standards to safeguard the community, workplace and environment.
  • The Company is committed to the safety and health of the surrounding community at each manufacturing site and will make sure that any adverse environmental impact is minimised.
  • The Company will provide adequate resources for the implementation and monitoring of safety policy.
  • Each site and department will have this policy prominently displayed so as to bring it to the attention of all employees.

Does technology play a role in ensuring plant safety? If yes, how?
The technology used for safety purposes at JK Cement comprises:

  • Digital safety management system module, which includes permit to work system, workplace hazard reporting and investigation, workplace near-miss reporting and investigation, workplace safety observation tour, safety statistics analysis, etc.
  • Fire / smoke detectors installations at fire risk areas (reference AFR operation, bag go down, etc.) and connected with the emergency control room.
  • Digital Control System (DCS) to control and monitor plant operations.
  • Nitrogen Purging System installation at process equipment (reference coal fine bins, liquid AFR installation, etc.)
  • Temperature sensors installation in different equipment.
  • Gas Detection Monitoring by using multi gas detectors for confined space activity.
  • CCTV cameras installed at multiple locations.
  • GPS installation in company vehicles, etc.
  • Tell us about the major challenges faced in ensuring plant safety?
  • In the cement industry, the major challenge that we are facing is the behaviour of the workforce towards safety. To deal this challenge, we have developed safety management system tools that include:
  • Safety Awareness Tool (safety induction, activity tool box talks, job specific safety training, monthly safety campaign and circulation incident-based safety alert).
  • Safety Inspection Tool (behaviour-based safety observation tour, workplace safety round, focus internal safety audit and external safety audit).
  • Reporting Tool (near miss reporting, hazard reporting and incident reporting).
  • Emergency Preparedness Tool (mock drills, onsite emergency plan, fire fighting equipment facility and medical emergency facility).
  • Risk Assessment Tool (job safety analysis, hazard identification and risk assessment).
  • Safety Observation Discussion Platform Tool (monthly safety review meeting, management representative and workers representative safety committee meeting and daily all plants manufacturing meeting).
  • Safety Guidelines Tool (Activity SOP / OCP, safety hand book, contractor obligation and OHS guidelines and activity dos and don’ts).
  • Workplace Safety Display Tool (activity safety display and activity SOP display).
  • Administrative Control Tool (risky activity permit to work system).
  • Incident Investigation Tool (root cause analysis, CAPA and safety recommendation).


Do you conduct safety training and audits for your plant personnel? Explain in detail.
Workplace Safety Trainings and Safety Audits are an important tool of safety management system:
Safety Awareness Tools:

  • Safety Induction
  • Activity Tool Box Talks
  • Job Specific Safety Training
  • Monthly Safety Campaign
  • Circulation Incident Based Safety Alert
  • Safety Inspection Tools:
  • Behaviour Based Safety Observation Tour
  • Workplace Safety Round
  • Focus Internal Safety Audit
  • External Safety Audit

How do you plan to better the safety of your plant in the years to come?
We have prepared a focus safety element plan for the coming years to reach the next level of safety system at JK Cement.
Focus safety elements are:

  • Human Safety
  • Equipment Safety
  • Fire Safety
  • Electrical Safety
  • Steel and Civil Structure Safety
  • Workforce Behaviour Development Programmes towards Safety
  • Stress Free Safety Culture
  • Environment Friendly Workplace
  • Healthy Workforce
  • Use of job-specific advanced personal protective equipment
  • Development of Injury-free Workplace based on Zero Harm Concept
  • Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds