Connect with us

Concrete

SCMs offer sustainability and performance advantages

Published

on

Shares

Sameer Bharadwaj, Head – Manufacturing Excellence, JK Cement, discusses how the strategic utilisation of SCMs leads to enhanced profitability, reduced carbon footprint, and aligns with global efforts toward decarbonisation in the cement industry.

Tell us about the supplementary cementitious materials (SCMs) used by your organisation in manufacturing of cement.
The key feature of SCMs is their Pozzolanic properties, which refers to its capability to react with Calcium Hydroxide (CH) to form Calcium Silicate Hydrate (C-S-H). Likewise, with the increased conventional fuel prices, adopting green energy utilisation is now become a necessity in order to bring down the cement manufacturing cost, in a similar manner adoption of SCM’s to a larger extent is a must requirement in order to bring down the clinker factor because clinker manufacturing will anyhow emit carbon emissions for calcination of limestone, but what we as a sustainable oriented manufacturer can contribute toward less carbon emissions is to produce more blended cement with less requirement of clinker.
At JK Cement, we manufacture various types of blended cements in which the contribution of SCM is well within the BIS norms. Major SCM’s are fly ash and slag which are procured from nearby thermal power plants and steel industries. We produce PPC (fly ash based) at all our manufacturing units in which 35 per cent (maximum) fly ash is being utilised. Also, to promote the more usage of blended cement, we are producing premium category PPC Cement which has a compressive strength equivalent to OPC. In our Muddapur plant in the South of India, we are also producing Portland Slag Cement (PSC).

How does the use of supplementary cementitious materials impact the process of cement manufacturing?
SCMs play a dual impact (both positive and negative) in the process of cement manufacturing. With the more usage of SCMs in blended cements, availability of them is a biggest challenge that too with cheaper cost.
Another negative impact is receipt of these materials with high moisture, for which proper feeding arrangement as well as extra energy is required to evaporate the moisture, which is an additional load to the manufacturing cost. SCMs such as pond ash, slag etc. are abrasive in nature, which wear out the cement mill internals at a faster pace, thereby resulting in more repair and maintenance cost. To mitigate all these challenges, regular resource mapping, new sources identification, various technological measures likewise installation of dryers, feeding systems are adopted for maximum supplementary cementitious materials’ utilisation. Looking into the positive aspects, the use of SCMs reduces the clinker factor, which not only reduces carbon emissions but also conserves our natural resources i.e., limestone.

  • What are the key benefits of using SCMs in the cement manufacturing process?
  • Reduce clinker factor, thereby reducing CO2 emissions
  • Reduce thermal and electrical energy
  • Enhance mines life
  • Reduce fossil fuels
  • Reduce water consumption

How does the use of supplementary materials increase the profitability of cement manufacturing for your organization?
SCMs contribute a lot in terms of increasing the profitability of cement manufacturing. It enhances the cement production capacity with a similar clinker factor of OPC (i.e., more cement will be produced against a given clinker composition percentage in OPC).
Our strategic planning to invest in new plants is in the direction of the available locations where both the availability as well as cost of supplementary cementitious materials are minimum. Usage of SCMs also improves the throughput of cement mills, due to which more cement can be produced for every hour of mill’s operation. Also, the inter-grinding of SCMs inside the mill consumes less electrical energy as compared to OPC production.

Tell us about the quality standards and checks implemented for the final product made using supplementary materials.
Standards released by Bureau of Indian Standards (BIS) are in place for adopting the quality standards for the final products. At JK Cement, we have our own Internal Quality Norms (IQN), which are far beyond BIS norms. BIS has released standards for each individual grade of cement in which maximum limits for dosage of each individual supplementary cementitious materials are defined with compressive strength targets on day basis (1D, 3D, 28D etc.).

The following are the measures which we are taking care of, while using SCMs in our cement manufacturing process:

Sourcing of SCMs from vendors with defined quality parameters

Proper storage of SCMs inside our plant premises to avoid any contamination

Defined checklist for quality check at each process with regular intervals

Frequent calibration of SCMs Dosing systems, to get a qualitative final product.

Proactive approach as well as instant actions towards any variation in quality parameters at any intermediate step of the process

    What are the major challenges you face while using supplementary materials for cement manufacturing?
    Quality as well as quantity are major challenges in case of SCMs usage in blended cements. In case of fly ash, its quality varies from plant-to-plant form which it is generating, as different plants are using different grades of coal, due to which colour, fineness and other quality parameters of fly ash varies and thereby directly affect the cement quality.
    Availability of good quality slag is limited, too, with economically viable cost, restricting more usage of it in blended cement. Except for fly ash and slag, availability of other SCMs is very less and not too economical.

    How does the use of cement made of supplementary materials impact its
    carbon footprint?

    SCMs offer sustainability and performance advantages for the construction industry. Their use as a partial replacement for portland cement not only results in more durable, high-performance concrete but also lowers energy consumption and greenhouse gas emissions. For every ton of clinker replaced by SCMs, CO2 emissions are reduced by approximately 0.8 tonnes.
    Cementitious blends have many properties that contribute to sustainable construction. Their use results in stronger, longer-lasting concrete and reduced emission of greenhouse gases. They also beneficially reuse by-products from other industries that might otherwise be disposed of in landfills. With the strategic use of SCM, cement industries are conserving natural resources for a longer time which enables them to produce a sustainable construction material in terms of low embodied carbon at a competitive cost. SCMs contribute to manufacturing of low clinker factor cement without compromising the quality of
    the product.

    How do you foresee the future of the global cement industry in terms of using alternative materials for cement manufacturing and running the race of decarbonisation?
    With the continuous and drastic reduction of Ordinary Portland Slag production and consequently increase in production of blended cement likewise PPC, PSC, composite cement etc. the usage of Supplementary Cementitious Materials is increasing day by day.
    This strategic change reduces the clinker factor utilisation, and thereby contributing reduction in CO2 emissions in clinker manufacturing and also comparatively less utilisation of specific electrical energy consumption (OPC demands more grinding power as compared to blended cements).
    In the current scenario, a lot of research and development are in process to produce eco-friendly cements, in which calcined clay based cement is one of the major breakthroughs. In terms of decarbonisation, various studies are carried out on Carbon Capturing Units (CCU) and its storage, electrification of cement rotary kilns, zero emission mining, improving the portfolio of green energy utilisation etc. will be a stepping stone as well as contribution to drastic reduction of CO2 emissions, aiming to achieve Net Zero by 2050.

    • Kanika Mathur

    Concrete

    India Sets Up First Carbon Capture Testbeds for Cement Industry

    Five CCU testbeds launched to decarbonise cement production

    Published

    on

    By

    Shares



    The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
    This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
    Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
    Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
    Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
    As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
    On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
    The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
    The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
    It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
    Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

    Continue Reading

    Concrete

    JK Lakshmi Adopts EVs to Cut Emissions in Logistics

    Electric vehicles deployed between JK Puram and Kalol units

    Published

    on

    By

    Shares



    JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
    The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
    “Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
    This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
    The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
    JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

    Continue Reading

    Concrete

    Holcim UK drives sustainable construction

    Published

    on

    By

    Shares



    Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

    Image source:holcim

    Continue Reading

    Trending News

    SUBSCRIBE TO THE NEWSLETTER

     

    Don't miss out on valuable insights and opportunities to connect with like minded professionals.

     


      This will close in 0 seconds