Connect with us

Concrete

The Future of Gypsum

Published

on

Shares

ICR charts out the evolution of gypsum and the role it plays in manufacturing in a bid to understand the economics of sustainability in cement production.

The word gypsum is derived from the Greek word ‘gypsos’ meaning ‘plaster.’ The quarries of the Montmartre district of Paris have long furnished burnt gypsum (calcined gypsum) used for various purposes, this dehydrated gypsum became known as plaster of Paris. The ability to harden or set when added with water makes it a very useful mineral for construction. In the mid-18th century, Gypsum was found to have great capabilities as a fertiliser. It is this connection as a fertiliser that today the world over phospho gypsum is now available aplenty as a by-product from fertiliser plants, and which can be gainfully used as an additive in the cement making process, replacing mineral gypsum.
The production of phosphate fertilisers requires breaking down calcium-containing phosphate rock with acid, producing calcium sulphate waste known as phospho-gypsum (PG). Similar is the case with the desulphurisation process of flue gas (to take out the SOx from the emissions) from power plants when natural limestone is used for this process resulting in FGD gypsum as the bi-product. This product is pure enough to replace natural gypsum in a wide variety of fields including drywalls, water treatment and cement set retarder.

Sustainability ahead
As a sustainability initiative, replacing natural gypsum scores better, but first let us understand the role of gypsum in the cement to concrete process.
The main purpose of adding gypsum in the cement is to slow down the hydration process of cement once it is mixed with water. The process involved in hydration of cement is that, when the water is added into cement, it starts reacting with the C3A (tricalcium aluminate, which is the main component of Portland cement) and hardens. The time taken in this process is very less, which doesn’t allow time for transporting, mixing and placing. When gypsum is added into the cement and water is added to it, reaction with C3A particles takes place to form ettringite. This ettringite is initially formed as very fine-grained crystals, which form a coating on the surface of the C3A particles. These crystals are too small to bridge the gaps between the particles of cement. The cement mix therefore remains plastic and workable. The time allowed for mixing, transporting and placing plays an important role in strength, composition and workability of concrete. As gypsum retards the process of hydration, it is termed as retarding agent of cement.
The role of gypsum in concrete making can be summarised as follows:

  1. Gypsum prevents flash setting of cement during manufacturing.
  2. It retards the setting time of cement.
  3. Allows a longer working time for mixing, transporting and placing.
  4. When water is mixed to cement aluminates and sulphates react and evolve some heat but gypsum acts as coolant and brings down the heat of hydration.
  5. Gypsum cements possess considerably greater strength and hardness as compared to non-gypsum cement.
  6. Water required in gypsum based cement for the hydration process is less.
    The use of gypsum as an additive in cement ranges from 2.5 to 5 per cent.
    In its natural form, gypsum can be found as thick layers in shale and as attractive crystals. No gypsum deposits are 100 per cent pure. It is usually found with deposits of a combination of the following: limestone, sand, shale, anhydrite and sometimes rock salt. To be a commercial deposit, gypsum content should be at least 75 per cent. But as mines get old the percentage of gypsum could be as low as 45 per cent in many of the natural deposits.

Logistically speaking
Gypsum mines or deposits can be found all over the world, but Spain, Thailand, United States, Turkey, Russia, UAE, Oman and Chile are the leading producers. India has deposits mainly in Rajasthan and that makes the logistics cost play an important role in the use of gypsum in cement and concrete in India. There are two components to be seen, the percentage of gypsum in the mineral (purity) that one is transporting and therefore total cost of moving it when compared with other forms of gypsum, which could be non-mineral, from synthetic or anhydrous to simply the spent acid or other forms of industrial or chemical waste.
The desulphurisation process itself now being made mandatory for all coal fired power plants creates an enormous opportunity for non-mineral gypsum to be used in cement. But the economics could be very tricky. Let us see the cost dynamics in some details as this could be the most sustainable way for producing gypsum for cement and concrete.
It is calculated that a 500 MW power plant would need 40,000T of limestone annually to take care of the SOx emissions through the desulphurisation process. This would amount to about 12 million tonne of limestone consumption (less than 3 per cent of the total limestone use per year) for the entire power generation of India. But the economics would lie in transportation. Even if limestone is available free of cost, the transportation cost including handling and royalty beyond 250 km could rise to Rs 1000/T as the landed cost at the power plant. The FGD gypsum after production would need to be transported to the cement grinding unit, which if more than 250 km would again cost the same. Thus the FGD gypsum would then compete with phospho gypsum, which is available aplenty in fertiliser or phosphate plants.
As these options compete with each other, use of natural gypsum would subside as the
enormous logistics cost of either importing it or transporting it across India would not be sustainable in the future.

Procyon Mukherjee

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares



The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares



JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares



Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds