Connect with us

Economy & Market

Precast tech has a lot of potential in India



– Rajesh S Pandit, Head – QMD (Urban Infrastructure), TATA Projects

What are the basic grounds on which one should prefer precast technology for the infra projects and specifically projects like Mumbai metro?
Precast structures/elements are cast off-site under factory conditions in a large area with all relevant infrastructure in place. The facility is generally called as casting yard. These precast elements are typical in size and are produced continuously like factory production in specific sets of moulds. Many times, being in congested public place, space availability to perform construction activities is very less. Therefore, projects like metro, prefer precast elements, which can be cast at place away from site. It can be brought in at right time/stage and place in position during night times when there is minimum interference to construction or movement of heavy equipment.

Volume and repetition are the key parameters in choosing precast option as these determines the benefit of precast over in-situ if any. For the projects, TATA Projects is executing elevated metro, we are casting girders/segments of girders at casting yard. For underground metro, tunnel ring segments are cast as precast elements in casting yard.

Being produced in controlled conditions and with minimal manual interventions (unlike cast in-situ), it turns out to be of a flawless and superior quality concrete structure with utmost safety. It also creates a scope for speed augmentation as these elements can be produced independent of site activities/constraints and runs as a parallel activity.

Please brief us on where precast technology is used and where cast in situ is used in the present Metro jobs?
Metro projects can be broadly classified into two categories – elevated (above around) and underground. In elevated metro projects, TATA Projects is designing and casting superstructure (above Pier) elements like pier cap, girders or girder segments as precast elements. In case of underground metro, TATA Projects produces tunnel lining ring segments as precast element.

In terms of cost and speed if one uses conventional method of construction over precast, what will be the shortcomings? What are the advantages of using precast?
Precast technology enables to produce parts of structure offsite independently. These activities run simultaneously and does not have to follow sequential progress at site. The structures or elements of the structure can be shifted to site at right time and just to be mounted/erected at required place. As mentioned in previous sections, these elements are cast in factory precision conditions with almost all activities are performed mechanically with minimal human interventions. The safety and quality standards achieved are very high as compared in-situ works. The area for casting yard is big enough to accommodate/stack large number of such elements ahead of time. The process of casting, stacking and despatch of these element is meticulously planned and expedited as well.

Do you use any software package for QC? Are quality audits carried out at what frequency? What is the software used for managing the project?
At TATA Projects, we use in-house developed IT platform for monitoring quality functions for documentation, analysis and MIS purpose. An interactive dashboard and analysis of data serves as an input for decision making for improvement. Quality audits are integral part of quality management process implemented at site. Generally, building projects undergo audits once in six months and metro projects undergo quality audits every three months.

In short what tests are conducted on piles before taking up the job of placing pile cap? What has been overall feedback on pile testing?
Test pile undergoes initial load test. Once this test is completed and results are positive, routine tests are conducted at different frequency on working piles. Routine tests are:

Pile integrity test by sonic logging
Pile Integrity by low strain using ultrasonic pulse velocity
High strain pile dynamic test

Please provide us the details of concrete used in precast and in situ. Grade and minimum cement content? How do you ensure QC parameters?
The concrete grades vary for each structure. If you consider a typical elevated metro project, in-situ structures are pile, pile cap and piers. Pier cap can be in-situ or precast. Girders or girder segments generally fall in precast category. A typical example of precast or cast in-situ structural element details are shared herewith. The minimum cement mentioned in referred table is picked up from contract technical specifications:

Raw material (cement, aggregate, Pozzolanic material and admixture) are carefully selected, which comply with applicable specifications. The concrete is designed in such a way that it not only comply with performance requirement as per technical specifications but also is extremely user-friendly.

It is produced from state-of-the-art fully automatic batching plant. It is regularly inspected and calibrated to ensure it is performing accurately. A well defined quality inspection and test plan is implemented to cover different tests on raw material before it’s use, tests on concrete during and just after production.

A team of an experienced quality control engineer and skilled technicians is deployed round a clock to monitor quality control process. A full-fledged quality control laboratory is established (near batching plant) and is equipped with calibrated equipment, which caters to all testing and monitoring needs.

Statistical analysis tools are adopted to continuously monitor performance Indices of concrete and necessary course corrections are made to keep it optimum. It also helps to predict trend and take proactive actions to avoid surprises.

How about the placement of seismic arrestors in the structure? Seismic arrestors are installed above pier cap and there is a groove where the shear key fits in our elevated metro projects currently in execution phase in Mumbai. How many shapes of Girders used in the super structure?
Generally, in metro projects (elevated), "U" shape, "C" Shape and "I" shape of girders are prevalent. Whereas, infrastructure projects (major bridges) are also designed with trapezoidal box (hollow from inside) girders (or segments) commonly.

It is learnt that for using precast technology of construction, one needs trained and highly skilled man power. What is the situation in our country with specific reference to your project?
The use of precast technology is evolving in India and is predicted as future of construction tomorrow by industry pundits. Factors like ever increasing paucity for skilled manpower, need for speed, quality and safety, etc. necessitated mechanisation of construction activities as much as possible.

The employment of skilled people who can handle formwork, casting with required quality/safety, transport of precast elements and safe heavy lifting operations at site for placement are very critical to successful management of precast construction. However, still Indian industry has a long way to go. We, in TATA projects, invest considerably in resources to induct/train continuously our skilled workers, front line supervisors and engineers in different activities before commencement of the critical activity for ensuring "first time right" and "Zero Rework" approach. Specialised vendors and industry experts are also roped in to train our workers for specific activities. The company has also rolled out technical handbooks covering almost all aspects of construction and home grown good practices in all streams (civil/mechanical/ electrical, etc).

Good practices are also shared through daily "quality triggers" across the organisation. Quality parks are established and utilised for training the workforce with mock-ups, models and samples for easy understanding. Daily quality toolbox talks are organised by field quality engineers to the workforce before start of any activity at site.

Kindly brief our readers on the use of technology as it is practised at your projects. How does it compare with that being used in other parts of world?
Automation in cutting and bending steel, usage of system form work, 3D and 4D, BIM, drone monitoring, HeliCranes in transmission and distribution projects, tunnel boring machines in tunnels for underground metro.

Can 3D printing technology become applicable to precast technology? Is it used in any part of the world?
Generally speaking, 3D printing is an in-situ casting without any mould/formwork with a machine whereas precast technology produces concrete elements by pouring concrete in a mould in a factory environment. Both may be complimentary for a total solution.

What do you think is the future of pre cast technology in India?
India is also going through rapid urbanisation and this has created a huge demand for adequate infrastructure and affordable housing segment which cannot be met through conventional construction and hence modernisation of construction industry must take place. It is not the infrastructure segment but also the building segment is showing immense interest in Precast technology.

Big developers and contractors like Amrapali, Purvankara, Brigade and BG Shirke are constructing millions of square feet in a year by precast technology and a lot of others are taking steps to implement precast technology. However, for the technology to truly take off, the Indian government has to provide favourable tax benefits to developers to implement modern technologies. There is definitely a lot of potential in India to become a major global market for precast technology. A few good examples will set the pace right and there won’t be any looking back then.

In the US, AASHTO has developed standard beam design for various load and geometrical condition and standard concrete beams are available for various spans and load conditions for ready usage. Unfortunately, this is not the situation India because there are no standard size available in India codes – even for road over bridges crossing railway where a good amount of standardisation can be done. There are a few technical challenges like filling the gaps between panel joints, waterproofing, thermal expansion/contraction, etc. Structural joints in seismic zones are difficult to achieve.

Moulds for the precast segments of underground metro.

Stacking of finished segments in casting yard

Precast girder segments for infra project (bridge)

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *


Cementing a Greener Future




Udai Singh, Vice President – Power Systems, Greater India, Schneider Electric, discusses the collaborative efforts undertaken by the industry for sustainable manufacturing operations.

A s the second-largest cement producer worldwide, India is experiencing a surge in demand, driven by rapid infrastructure development and residential expansion. In response to the pressing climate change concerns, the country is taking proactive measures and aligning its progress with sustainable practices. With a clear objective of achieving a net-zero economy by 2070, the cement industry plays a pivotal role in this transformative journey, necessitating a shift towards sustainable cement manufacturing through robust decarbonisation strategies and collaborative endeavours.
The global cement industry accounts for 7-8 per cent of the world’s carbon emissions. This is largely because cement production is a complex and highly energy-intensive process. The industry’s heavy reliance on coal for energy needs significantly contributes to elevated carbon emissions. This makes it critical for this industry to adopt a decarbonisation roadmap supported by technology, innovation and collaboration.

Collaboration for sustainability
Formulating a well-defined decarbonisation strategy in collaboration with expert consultants is crucial for cement companies to address operational challenges and identify key areas for emission reduction and energy efficiency. With a tailor-made decarbonisation roadmap, they can expedite the realisation of their emission reduction and energy efficiency targets. This approach involves benchmarking their facilities against industry peers on critical parameters, such as energy efficiency, carbon footprint reduction, adoption of renewable energy sources, minimising fossil fuel reliance and embracing sustainable practices. By diligently tracking their decarbonisation efforts through benchmarking, cement makers can gain valuable insights and knowledge, leading to better resource allocation, optimisation of energy-intensive processes and adoption of efficient practices for overall carbon reduction.
Also, considering the urgency to switch to renewable energy sources and reducing dependency on coal, the cement makers can use technology solutions with the help of technical sustainability experts to simulate the best mix of alternative fuels including biofuels, municipal waste, etc. Process Simulation can empower them to identify optimal combinations, reduce costs and gain flexibility in fuel choices, thereby minimising environmental impact and fortifying their resilience against market fluctuations and supply chain volatilities.
In addition, a decarbonisation strategy leveraging technological solutions not only enhances manufacturing efficiency but also extends to related operations. For instance, they can reduce idle hours of heavy earth-moving machinery to reduce energy demand and gain cost advantages. Moreover, deploying advanced digital solutions offers them better management and monitoring of the machinery with effective scheduling of equipment. Additionally, process optimisation and real-time dynamic simulations across various parameters within the facility lead to higher operational efficiency, reduced clinker to Cement ratio, reduced fuel and thermal energy consumption, predictive maintenance, and proactive issue detection of alternative fuels and raw material feed availability.

Beyond decarbonisation
While reducing carbon footprint is one of the primary objectives of sustainable cement manufacturing, cement manufacturers can gain a multitude of benefits from it. For instance, achieving sustainability in operations results in higher energy efficiency and reduced energy consumption. This massively lowers operational costs for cement companies and ultimately might result in reduction in prices of their end products, making them more competitive and resilient in the market.
Moreover, the surge in consumer awareness surrounding sustainable practices has elevated the significance of sustainable manufacturing. In today’s landscape, consumers are increasingly drawn to products with minimal environmental impact. Thus, by adopting sustainable practices, cement companies can align their offerings with consumer preferences, gaining a significant business advantage.
In addition to consumer preferences, fostering collaboration with technology partners paves the way for accelerated innovation and the deployment of cutting-edge technologies. This collaborative approach propels the cement industry towards greener production methods and reinforces its position at the forefront of the sustainability mission. By executing a robust decarbonisation strategy guided by collaborative efforts, the cement industry plays a pivotal role in supporting the transition towards a low-carbon future. The benefits of sustainable cement manufacturing extend well beyond reducing carbon emissions. Energy efficiency, cost savings, consumer appeal, and technological innovation all converge to enhance the industry’s overall environmental stewardship and competitiveness in the pursuit of a greener and more sustainable future.

Udai Singh, Vice President – Power Systems, Greater India, Schneider Electric
is a a seasoned business leader with extensive experience in sales, marketing, and operational management.

Continue Reading


Digital Evolution




Shailendra Tiwari, Head – Information Management, Nuvoco Vistas Corp and Chirag Shah, Head – Marketing, Nuvoco Vistas Corp.

In the continuously changing world of the Indian cement business, embracing new technology has become critical for increasing efficiency, monitoring cost and revenues, and assuring higher quality products. Automation, artificial intelligence and data analytics are all helping to make manufacturing processes run more smoothly, reduce downtime, and maintain high standards. For example, machine learning can anticipate when maintenance is required, IoT allows for real-time monitoring of equipment to prevent malfunctions, augmented reality is frequently utilised for safety training, and big data analytics assists in identifying and resolving production concerns with speed and accuracy.
Going digital is more than just implementing new technology. It also entails integrating it into all aspects of the organisation, from physical asset management to regulatory compliance. Those who accept these changes early on gain an advantage by sharing best practices and increasing value for all parties involved, propelling the sector towards a more efficient, sustainable and inventive future.
Nuvoco has maintained its commitment to digital transformation. Nuvoco chose not to just weather the storm but use it as a catalyst for transformation. The introduction of NuvoNirmaan, a contemporary Direct-to-Consumer (DTC) platform, exemplifies this mindset. NuvoNirmaan goes beyond traditional limits, providing a comprehensive digital platform that walks clients through each stage of the home-building process. From budget estimates to construction instructions to Vastus, this app exemplifies Nuvoco’s commitment to customer-centric solutions and establishes a new industry standard.

Digital strategies
Central to Nuvoco’s digital transformation journey is the Digitally Enabled Nuvoco (DEN) programme, a testament to the company’s proactive approach to addressing the evolving needs of stakeholders. Through strategic initiatives under DEN, Nuvoco has leveraged technology to elevate customer engagement.
One such project is the adoption of the SAP consumer Relationship Management (CRM)
system nomenclature as Nuvoco’s eXcellence Sales Assistant (NXSA), provides Nuvoco’s salesforce with actionable insights into consumer behaviour and preferences. This integration not only builds consumer connections but also enables interaction across all touchpoints.
Furthermore, Nuvoco has introduced a modern loyalty rewards program through mobile apps like ‘Vriddhi,’ ‘Milan,’ ‘Maitri,’ and ‘Nipun’ to cater to dealers, sub-dealers, and individual house builders. These apps are integrated with enterprise resource planning software, making transactions smoother and enabling real-time tracking of loyalty benefits.
Looking ahead, Nuvoco is still dedicated to leveraging cutting-edge technologies like Artificial Intelligence and Industry 4.0 to foster innovation and sustainability. As the industry advances, Nuvoco is set to lead the way, moving ahead toward a safer, smarter, and more sustainable future.
In short, Nuvoco’s digital transformation journey is more than a strategic requirement; it demonstrates the company’s vision, resilience, and dedication to customer-centricity. By adopting digitisation, Nuvoco has not only adapted to changing times but has also emerged as a cement industry innovator, setting new norms and redefining possibilities.

Shailendra Tiwari, Head – Information Management, Nuvoco Vistas Corp
spearheads digital initiatives, enhancing the synergy between technology and business strategy.

Chirag Shah, Head – Marketing, Nuvoco Vistas Corp, with over 20 years of experience builds marketing strategies for the brand.

Continue Reading


Streamlining supply chains will become paramount




Pankaj Phadnis, President, Retail, Infra.Market, discusses the strategic expansion and the company’s vision for the future of AAC blocks and the construction industry.

What prompted Infra.Market to enter the AAC blocks market, and how does it align with their overall growth strategy?
Founded in 2016 and valued today at $2.5 billion, Infra.Market, India’s leading construction materials company, is reshaping the future of construction. Utilising advanced manufacturing, innovative planning, and technology, it generates value by supplying products under its brand and from invested companies like RDC concrete and Shalimar Paints. It is the only company in the country to seamlessly supply over 15 different construction material product categories, including concrete, autoclaved aerated concrete (AAC) blocks, steel, pipes and fittings, mdf, plywood, laminates, tiles, bath fittings and sanitary, fans, lights, kitchen and electrical appliances, modular kitchens and wardrobes, designer hardware and even paints.
Infra.Market’s decision to venture into AAC blocks stemmed from a strategic assessment of market demand, opportunities for diversification, and a commitment to innovation. Recognising the increasing demand for lightweight and sustainable construction materials, Infra.Market identified AAC blocks as a viable solution, aligning with the growing preference for eco-friendly building materials. The Indian AAC block market stands as the second-largest manufacturer globally, trailing only behind China. Projections indicate a robust compound annual growth rate (CAGR) of 14.3 per cent from 2020 to 2027, with an estimated market value of 11,000 crores. Despite its significant potential, the industry remains largely fragmented, characterised by numerous regional players.
At Infra.Market, we aim to consolidate this landscape by establishing a pan-India presence. Currently, we operate five manufacturing plants, strategically positioned across the nation. Additionally, plans are underway for the establishment of five more plants, further strengthening our footprint and ensuring widespread accessibility of our AAC blocks products. Expanding into construction materials, Infra.Market aims to diversify its portfolio, serve a broader customer base, and lead in sustainable solutions, reflecting its long-term vision for growth.

Share insights into the market trends and growth opportunities for AAC blocks in the construction industry.
The market trends for AAC blocks in the construction industry are indicative of a significant shift from traditional red bricks to AAC blocks, presenting substantial growth opportunities. Despite the substantial growth witnessed in AAC block usage over the past decade, it currently constitutes only 7-8 per cent of the industry, with red bricks still dominating 85-90 per cent of the market. However, there’s been a noticeable decline in the supply and consumption of red bricks due to environmental concerns across most parts of India.
AAC blocks have emerged as the preferred alternative to red bricks across all segments, including residential, commercial, and infrastructure projects. India’s annual production of bricks is approximately 440-530 million cubic meters per annum, whereas AAC block manufacturing capacity stands at approximately 27-32 million cubic meters. The widespread adoption of AAC blocks is evident in metro cities like Mumbai and Delhi, where they have achieved around 70 per cent penetration, replacing red bricks in many construction projects.
Government infrastructure projects and major residential and commercial developers recommend the use of AAC blocks, further driving their demand and market penetration. Moreover, with the improvement of supply chains, AAC blocks are increasingly being utilised in smaller towns and villages, expanding their reach and market potential. This shift signifies not only a preference for more sustainable construction materials but also presents lucrative growth opportunities for AAC block manufacturers and stakeholders in the construction industry.

How does automation and technology contribute to your manufacturing process? Has research and development helped in improving the performance?
Automation and technology play a crucial role in optimising our manufacturing process for AAC blocks. Our state-of-the-art R&D lab is instrumental in this endeavour, overseeing the manufacturing process and implementing rigorous quality control procedures. Through automation, we streamline operations, enhance efficiency, and ensure consistency in product quality. Advanced technology enables us to leverage data analytics and real-time monitoring to identify and address any potential issues promptly, thereby minimising downtime and maximising productivity.

What role does AAC blocks play in green building and sustainable construction practices, and how does your company contribute to these efforts?
Sustainability shines through in our approach and eco-conscious construction practices. Our AAC blocks have earned the prestigious green product certification from the CII-Green Products and Service Council, showcasing their environmental integrity and role in green building. By incorporating waste materials like flyash and slag into our concrete products, we actively reduce our ecological footprint. Additionally, our membership in the Indian Green Building Council recognises our dedication to green initiatives. Expanding our sustainability efforts, we have delved into metal recycling to mitigate the construction industry’s environmental impact, thereby creating a greener, more sustainable future.
Beyond individual businesses, at Infra.Market, we champion eco-friendly practices. We launched IM Nirmaan, a CSR initiative by Infra.Market that has positively impacted more than 2500 construction workers by providing comprehensive skilling programmes, aligning with sustainable construction. With IVAS, our consumer brand, we pledge to plant two trees for every kitchen sold. Our kitchens are designed with a focus on being carbon neutral, from materials selection to manufacturing processes, ensuring minimal environmental impact.

What innovative strategies are you implementing to optimise the production and distribution of AAC blocks?
Our objective at Infra.Market extends beyond mere commerce; it revolves around establishing unwavering trust by seamlessly integrating technology into every aspect of our operations including those of AAC blocks. Through the incorporation of technology into our supply chain, we anticipate capacity utilisation and efficiently allocate demand. We are actively developing technical solutions utilising cloud infrastructure, data analytics, machine learning/artificial intelligence (AI), augmented reality (AR) and virtual reality (VR) for our stakeholders. Our retailer app streamlines management processes, including purchasing, financing, inventory management, and delivery, all within a single platform. Thus, it helps optimise the production and distribution of AAC blocks. We have developed a customised digital ecosystem for the market using microservices, Golang, Python and PostgreSQL, increasing delivery efficiency with astute insights and striving for user experiences on par with leading online platforms.

What are the primary benefits of using AAC blocks in construction projects, and how do they compare to other materials?
AAC blocks present many advantages over conventional construction materials such as red bricks, concrete blocks, flyash blocks, mivan shuttering and prefab structures. These benefits position AAC blocks as a superior choice in construction projects. Here are some key advantages:
Lightweight: AAC blocks are significantly lighter than traditional alternatives, reducing the overall dead weight of the structure. This characteristic facilitates easier handling and transportation
during construction.
Green product: Utilisation of fly ash and reduced water consumption in the manufacturing process make AAC blocks an environmentally friendly option. This sustainability aspect aligns with green building practices, contributing to a reduced ecological footprint.
Cost saving: AAC blocks offer cost savings compared to other materials due to their efficient production process, lighter weight and reduced labour requirements during construction.
Faster construction and improved labor output: The lightweight nature and ease of handling of AAC blocks enable faster construction, leading to improved labour productivity. This results in shorter project timelines and reduced labour costs.
Better thermal insulation: AAC blocks provide superior thermal insulation properties, helping to regulate indoor temperatures and reduce energy consumption for heating or cooling purposes.
Flexibility: AAC blocks can be easily cut into smaller sizes, allowing for greater flexibility in
design and construction, accommodating various architectural requirements.
Termite resistant: AAC blocks are inherently resistant to termites, offering long-term durability and reducing the need for pest control measures, enhancing the longevity of the structure.
Compared to other materials, AAC blocks stand out for their combination of lightweight, eco-friendliness, cost-effectiveness, speed of construction, thermal insulation, flexibility and termite resistance. These qualities make AAC blocks a preferred choice for construction projects seeking efficiency, sustainability and durability.

How do you see the future of the AAC blocks industry evolving, and what opportunities or challenges do you anticipate?
The AAC blocks industry in India is developing, poised for significant consolidation and growth in the years ahead. The landscape is changing as more organised players are investing to meet the increasing demand, setting the stage for expansion and advancement. With this consolidation comes the anticipation of progress across various dimensions of the industry, ranging from operational efficiency to research and development initiatives and the optimisation of supply chains. The establishment of new production capacities by organised entities is set to fortify the industry’s ability to keep pace with escalating demand effectively.
Moreover, a dedicated focus on research and development is expected to usher in technological innovations aimed at elevating the quality, efficiency, and sustainability. Streamlining supply chains will become paramount, ensuring the prompt delivery to construction projects nationwide. As AAC blocks continue to gain traction as a superior construction material, the market is primed for expansion, offering enticing prospects for manufacturers and suppliers alike.
Navigating the sourcing of raw materials and adherence to sustainability guidelines is a significant hurdle for AAC blocks manufacturers. As competition intensifies with industry consolidation, companies will need to differentiate themselves through product quality, innovation and superior customer service to maintain an edge. Additionally, meeting the increasing demand may necessitate investments in skills development programmes to ensure a proficient workforce capable of driving industry growth, mirroring our IM Nirmaan initiative. Through IM Nirmaan, we focus on skilling and upskilling construction workers to meet the evolving needs of the industry and ensure sustainable progress. Workforce development not only enhances the capabilities of individuals but also strengthens the overall resilience of the construction sector.

What sets Infra.Market apart in the AAC blocks market, and what are your long-term goals and strategies for growth?
Infra.Market distinguishes itself in the AAC blocks market through a combination of strategic initiatives and unwavering commitment to excellence. Our long-term goals and growth strategies are intricately aligned with our vision to be the foremost player in the industry while maintaining a steadfast focus on quality, service, and innovation. Our aim is to become the foremost AAC blocks manufacturer in a year, dominating major cities with top-tier products and services by setting an unmatched standard for quality and reliability in the market. At the core of our strategy lies our dedication to manufacture Grade 1 AAC blocks, ensuring superior strength and above. Our excellence is encapsulated in our tagline ‘Majboot Blocks, Majboot Deewarein,’ symbolising the strength and durability of our products, which have become synonymous with reliability and trustworthiness.
We recognise the importance of engaging with influencers and institutions to expand our reach and establish ourselves as the preferred supplier of choice in the market. Further solidifying our position as a market leader, we are forging strategic partnerships and collaborations. We prioritise and actively invest in research and development, innovation and technology to stay ahead of the curve and anticipate evolving market trends and customer preferences.
As part of our long-term growth strategy, we plan to expand our presence across geographies, strategically positioning ourselves closer to major markets to better serve our customers and capitalise on emerging opportunities. Our relentless pursuit of excellence, coupled with our customer-centric approach and innovation, forms the cornerstone of our long-term goals and strategies for growth in the AAC blocks market. We are confident in our ability to achieve our vision of becoming the leader in the industry while delivering value to our customers and stakeholders.

  • -Kanika Mathur

Continue Reading

Trending News



Don't miss out on valuable insights and opportunities to connect with like minded professionals.


    This will close in 0 seconds